Cho nửa đường tròn (O) đường kính AB= 2R, dây AC và tia tiếp tuyến Bx nằm trên cùng nửa mặt phẳng bờ AB chứa nửa đường tròn . Tia phân giác của góc CAB cắt dây BC tại F , cắt nửa đường tròn tại H , cắt Bx ở D.
a) Chứng minh FB = DB và HF = HD
b) Gọi M là giao điểm của AC và Bx . Chứng minh AC . AM = AH . AD
c) Tính tích AF .AH + BF.BC theo bán kính R của đường tròn (O)
Cho nửa đường tròn tâm O, đường kính AB= 2r và 1 dây CD (C thuộc AD)
a) Hạ AP và BQ vuông góc với CD.c/m CP=DQ
b) Cho AC= r và góc COD =90 độ. Tính CD và CB theo r
c) Cho AP=48 cm, BQ=120cm, biết PQ =154 cm. Tính bán kính đường tròn
Cho một đường tròn (O) đường kính AB = 2R, dây AC =R. Hãy tính góc CBA.
Cho nửa đường tròn tâm O đường kính AB=2R (R>9). Trên bán kính OA lấy hai điểm C và D sao cho AC=6; AD=9. Đường thẳng vuông góc với AB tại D cắt nửa đường tròn tại E. Điểm F thuộc nửa đường tròn sao cho góc ACF=góc DCE. Đường tròn tâm I bán kính r tiếp xúc với 2 cạnh của góc ECF và tiếp xúc trong với đường tròn tâm O. Tính r.
Giúp mình với!!!
Cho nửa đường tròn tâm O đường kính AB=2R (R>9). Trên bán kính OA lấy hai điểm C và D sao cho AC=6; AD=9. Đường thẳng vuông góc với AB tại D cắt nửa đường tròn tại E. Điểm F thuộc nửa đường tròn sao cho ^ACF=^DCE. Đường tròn tâm I bán kính r tiếp xúc với 2 cạnh của góc ECF và tiếp xúc trong với đường tròn tâm O. Tính r.
Cho nửa đường tròn tâm O đường kính AB=2R (R>9). Trên bán kính OA lấy hai điểm C và D sao cho AC=6; AD=9. Đường thẳng vuông góc với AB tại D cắt nửa đường tròn tại E. Điểm F thuộc nửa đường tròn sao cho \(\widehat{ACF}=\widehat{DCE}\). Đường tròn tâm I bán kính r tiếp xúc với 2 cạnh của góc ECF và tiếp xúc trong với đường tròn tâm O. Tính r.
Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F.
a) Chứng minh tứ giác CFDH nội tiếp
b) Chứng minh CF.CA = CH.CB
Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:
a) Tứ giác BCDE nội tiếp.
b)góc AFE= ACE.
Cho nửa đường tròn (O) đường kính AB,K là điểm chính giữa cung AB. Vẽ bán kính OC sao cho góc BOC= 60 độ.
a)Gọi M là giao điểm của AC và OK. Chứng minh MO=MC
b)Cho AB= 2R, tính OM theo R
Cho đường tròn (O;R), dây AB khác đường kính. Vẽ về hai phía của AB các dây AC, AD. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ B đến AC và AD. Chứng minh rằng: HK < 2R.
1, Cho nửa đường tròn (O) đường kính AB=2R .Từ 1 điểm M trên tiếp tuyển tại điểm A vẽ tiếp tuyến thứ 2 MC vs nửa đường tròn .vẽ CH ⊥⊥ AB ,CH cắt MB tại I CHỨNG MINH
a, OM ⊥⊥ AC
b, Gọi K là giao điểm của OM và AC .CM rằng OK ×× OM không đổi
c, so sánh IH và IC
2, Cho đường tròn (O) bán kính R với R=5 cm và P là điểm ở bên trong đường tròn 2 dây AB và CD của đường tròn cắt nhau tại P bt AB=8cm
a, tính khoảng cách từ O đến dây AB
b, Biết khoảng cách từ O đến dây CD=3cm tứ giác ACDB là hình gì vì sao