Cho nửa đường tròn (O) đường kính AB=2R. Trên nửa mặt phẳng chứa nửa đường tròn (O) có bờ là AB. Vẽ tiếp tuyến Ax, từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E, MB cắt nửa đường tròn tâm O tại D( D khác B).
a. CMR: AMDE nội tiếp đường tròn.
b. CMR: MA.MA=MD.MB
a: Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên MO là trung trực của AC
=>MO vuông góc AC tại E
góc ADB=1/2*sđ cung AB=90 độ
=>AD vuông góc MB
góc ADM=góc AEM=90 độ
=>AMDE nội tiếp
b: ΔMAB vuông tại A có AD là đường cao
nên MA^2=MD*MB