a: Xét tứ giác OBMC có
\(\widehat{OBM}+\widehat{OCM}=180^0\)
Do đó: OBMC là tứ giác nội tiếp
a: Xét tứ giác OBMC có
\(\widehat{OBM}+\widehat{OCM}=180^0\)
Do đó: OBMC là tứ giác nội tiếp
cho nhửa đường tròn tâm O bán kính AB kẻ tiếp tuyến Bx với nửa đường tròn .ấy 1 điểm thuộc nửa đường tròn (AC>CB) TIẾP TUYẾN CẮC tại C cảu nửa đường tròn cắt Bx tại M Tia AC cắt Bx tại N
1) chứng inh CB vuông góc OM
2) chứng minh BM=MN
Cho nửa đường tròn (O) đường kính AB, kẻ tiếp tuyến Ax. Qua C nằm trên nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Ax tại M, tia Bx cắt Ax tại N.
a) Chứng minh OM vuông góc với AC
b) Chứng minh M là trung điểm của AN
c) Kẻ CH vuông góc AB, BM cắt CH ở K. Chứng minh K là trung điểm của CH
Cho nửa đường tròn đường kính AB,tiếp tuyến Bx.Qua điểm C trên nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Bx tại M.Tia AC cắt Bx tại N
a) Chứng minh Om vuông góc với BC
b) Chứng minh M là trung điểm của BN
c) Kẻ CH vuông góc với AB;AM cắt CH tại I.Chứng minh I là trung điểm của CH
Cho nửa đường tròn tâm O đường kính AB tiếp tuyến Bx . qua C trên nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Bx tại M tia Ac cắt Bx tại N .
a)CM : OM vuông góc với BC
b)CM : M là TĐ BN
c)Kẻ CH vuông góc với AB , AM cắt CH ở I . CM I là TĐ CH
Cho nửa đường tròn tâm O đường kính BC. Tiếp tuyến Bx,Cy. A thuộc nửa đường tròn sao cho AB<AC. Tiếp tuyến tại A cắt Bx tại M, cắt Cy tại N
AC cắt Bx tại D chứng minh OD vuông góc với BN
cho nửa đường tròn tâm (O) đường kính AB, tiếp tuyến Bx. Qua c trên nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Bx ở M, tia AC cắt Bx ở N
a) CMR: OM vuông góc vs BC
b) CMR: M là trung điểm BN
c) Kẻ CH vuông góc vs AB, AM cắt CH ở I. CMR I là trung điểm CH
Bài 4: Cho nửa đường tròn (O;R) đường kính BC. Trên nửa mặt phẳng bờ BC chứa nửa đường tròn
vẽ tiếp tuyến Bx của(O), A là điểm bất kì thuộc nửa đường tròn sao cho AB Tiếp tuyến tại A của (O) cắt tia Bx tại D.
a) Chứng minh bốn điểm A,D,B,O cùng thuộc một đường tròn;
AB tại điểm
K.
b) Tia CA cắt Bx tại E. Chứng minh rằng OD
song song CE
và CA.CE=4R;
Bài 4: Cho nửa đường tròn (O;R) đường kính BC. Trên nửa mặt phẳng bờ BC chứa nửa đường tròn
vẽ tiếp tuyến Bx của(O), A là điểm bất kì thuộc nửa đường tròn sao cho AB Tiếp tuyến tại 4 của (O) cắt tia Bx tại D.
a) Chứng minh bốn điểm A,D,B,O cùng thuộc một đường tròn;
AB tại điểm
K.
b) Tia CA cắt Bx tại E. Chứng minh rằng OD
song song CE
và CA.CE=4R;
Cho nửa đường tròn (O) đường kính BC. Vẽ 2 tiếp tuyến Bx, Cy của (O). Gọi A là điểm trên nửa đường tròn sao cho AB < AC. Tiếp tuyến tại A của (O) cắt Bx, Cy tại M, N.
a) Chứng minh MN = BM + CN
b) Chứng minh OM ⊥ AB và OM // AC
c) Vẽ đường cao AH của tam giác ABC. Chứng minh AH^2 = AB.AC
d) Đường thẳng AC cắt Bx tại D. Chứng minh OD ⊥ BN