N = 1.2.3 + 2.3.4 + ... + n(n+1)(n+2)
4N = 1.2.3.4 + 2.3.4.(5-1) + ... + n(n+1)(n+2)[(n+3)-(n-1)]
4N = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + n(n+1)(n+2)(n+3) - (n-1)(n)(n+1)(n+2)
4N = n(n+1)(n+2)(n+3)
4N + 1 = ( n2 + 3n + 1)2 ( đpcm )
N = 1.2.3 + 2.3.4 + ... + n(n+1)(n+2)
4N = 1.2.3.4 + 2.3.4.(5-1) + ... + n(n+1)(n+2)[(n+3)-(n-1)]
4N = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + n(n+1)(n+2)(n+3) - (n-1)(n)(n+1)(n+2)
4N = n(n+1)(n+2)(n+3)
4N + 1 = ( n2 + 3n + 1)2 ( đpcm )
Tìm số nguyên dương n sao cho A=(n+3)(4n2+14n+7) là 1 số chinh phương
Giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1)+7 không chia hết cho 7. Chứng minh rằng 4n^3-5n-1 không là số chinh phương
Tìm n để : n^2 + 4n + 2013 là số chinh phương
Cho \(n\in N\), p là số nguyên tố và \(a=\dfrac{2n+2}{p};b=\dfrac{4n^2+2n+1}{p}\)là các số nguyên. CMR a,b không đồng thời chính phương
Sn = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
Tính tổng
tìm n nguyên dương sao cho s(n)=1.2.3.....7 +n(n+1)(n+2).....(n+7) có thể viết dưới dạng tổng các bình phương 2 số nguyên dương
1. PTĐT thành nhân tử
a) \(x^4+2x^3-16x^2-2x+15\)
b) \(2x^4-x^3-9x^2+13x-5\)
c) \(x^4+6x^3+11x^2+5x+1\)
2. CMR; ∀n ∈ Z thì:
a) \(n^4+2n^3-n^2-2n\) ⋮ 24
b) \(n^4-4n^3-4n^2+16n\) ⋮ 384
1.\(PTĐT\) thành nhân tử
a) \(x^4+2x^3-16x^2-2x+15\)
b) \(2x^4-x^3-9x^2+13x-5\)
c) \(x^4+6x^3+11x^2+6x+1\)
2. CMR; ∀ n ∈ Z thì
a) \(n^4+2n^3-n^2-2n\) ⋮ 24
b) \(n^4-4n^3-4n^2+16n\) ⋮ 384
1) Với n∈ N. CMR N=2015^4n+2016^4n+2017^4n+2018^4n không phải là số chính phương.
2) Cho hình thoi ABCD có AC=20 cm, Góc BAD=60 độ. Lấy điểm M bất kỳ trên CD. vẽ NQ vuông góc với AC, NP vuông góc với BD.
a) Tính SABCD
b)Tính MinPQ