Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d của đường tròn. Gọi M và N lần lượt là chân các đường vuông góc kẻ từ A đến B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng: a) Tứ giác ABNM là hình thang vuông
b) Ac là tia phân giác góc BAM
c) = AM.BN
Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn kẻ tiếp tuyến d của đường tròn. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng : AC là tia phân giác của góc BAE
Cho nửa đường tròn tâm O đường kính AB. Qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d của đường tròn. Gọi E, F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng:
a. CE=CF
b. AC là tia phân giác của góc BAE
c. CH^2= AE.CF
Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d của đường tròn. Gọi E và F lần lượt là các đường chân vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng:
a) CE=CF
b) AC là tia phân giác của góc \(\widehat{BAE}\)
c) \(CH^2=AE.BF\)
a)Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MC của đường tròn, A và C là các tiếp điểm. Kẻ đường kính BC. Biết 70 độ thì góc AMC bằng:
b)Cho đường tròn (O; 2cm). Từ điểm A sao cho OA = 4cm , vẽ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là tiếp điểm). Chu vi tam giác ABC bằng:
c)Cho nửa đường tròn tâm O, đường kính AB cm =10 . Điểm M thuộc nửa đường tròn. Qua M kẻ tiếp tuyến xy với nửa đường tròn. Gọi D và C lần lượt là hình chiếu của A, B trên xy. Diện tích lớn nhất của tứ giác ABCD là:
Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn kẻ tiếp tuyến d của đường tròn. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng : C H 2 = AE.BF
Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn kẻ tiếp tuyến d của đường tròn. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng : CE = CF
bài 1: cho nửa đường tròn (O; R), đường kính AB. Từ điểm M bất kỳ thuộc nửa đường tròn, kẻ MN vuông góc với AB (N ∈ AB; M khác A; M khác B). từ N kẻ ND và NE lần lượt vuông góc với AM và BM (D ∈ AM, E ∈ BM).
a, Tứ giác DMEN là hình gì? Chứng minh.
b, Chứng minh DM . AM = EM . BM
c, Gọi O’ là tâm đường tròn đường kính NB. chứng minh DE là tiếp tuyến của đường tròn (O’).
d, Gọi I là điểm đối xứng với N qua D; gọi K là điểm đối xứng với N qua E. Xác định vị trí của M trên nửa đường tròn (O) để tứ giác AIKB có chu vi lớn nhất.