a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
Do đó: ΔHNM\(\sim\)ΔMNP
b: \(NP=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(MH=\dfrac{MN\cdot MP}{NP}=4.8\left(cm\right)\)
\(HN=\dfrac{MN^2}{NP}=3.6\left(cm\right)\)
=>HP=6,4(cm)
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
Do đó: ΔHNM\(\sim\)ΔMNP
b: \(NP=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(MH=\dfrac{MN\cdot MP}{NP}=4.8\left(cm\right)\)
\(HN=\dfrac{MN^2}{NP}=3.6\left(cm\right)\)
=>HP=6,4(cm)
Cho tam giác MNP vuông tại M có MN=5cm MP=12cm kẻ đường cao MH(H thuộc NP)
a) chứng minh tam giác HNM Đồng dạng với tam giác MNP b)tính độ dài các đường thẳng NP MH c)trong MNP kẻ phân giác MD (D thuộc MN) Tam giác MDP kẻ phân giác DF(F thuộc MP) chứng minh EM/EN =DN/DP=FP/FM=1
cho tam giác MNP vuông tại N có MN = 6cm, Np = 8 cm. Tia phân giác của góc N cắt Mp tại H. Từ H kẻ He vuông góc với Np ( E thuộc NP)
a) Tính đọ dài MP
b) chứng minh: tam giác MNP đồng dạng với tam giác HEP
c) Tính độ dài HM; HP
Cho tam giác MNP vuông tại M, có MN=12cm, MP=16cm. Kẻ đường cao MH (H thuộc NP) a) Chứng minh: tam giác HNM= tg NMP b) tính độ dài các đoạn thẳng NP,MH Giúp với ạ
Cho tam giác MNPvuông tại M; DN=DP; D thuộc vào NP; Gọi E;F lần lượt là chung điểm của MN và MP:
a) Chứng minh MEDF là hình chữ nhật
b) Chứng minh tam giác MDN cân biết MN = 8cm, MP = 6cm: Tính MD
c) Tìm điều kiện của tam giác MNP để MEDF là hình vuông
Cho tam giác MNP vuông tại M (MN<MP). Vẽ đường cao MH(H thuộc NP)
a. Chứng minh tam giác MNP đồng dạng với tam giác HNM
b. Chứng minh MN^2=NH.NP
c. Vẽ tia phân giác MK của góc NMP (K thuộc NP). Biết MN=7,2 cm và MP=9,6 cm. Tính độ dài các đoạn thẳng NP, NH và MK.
Cho tam giác MNP ( góc M= 90°), MH vuông góc với NP tại H, MN=9, MP=12. a, chứng minh tam giác HNM đồng dạng vs tam giác MNP b, tính NP, MH, NH, HP c, gọi MI là phân giác góc M. Tính NI, IP
Cho tam giác MNP vuông ở M, đường cao MH, phân giác góc MNP cắt MP tại D. Cho biết MN = 6cm, MP = 8cm. a) Tính NP. Chứng minh Δ H M N và Δ H P M đồng dạng. b) Trên NP lấy điểm E sao cho PE = 4cm. Chứng minh N E 2 = N H . N P c) Tính diện tích Δ P E D