a: Xét ΔMIN vuông tại I và ΔMIP vuông tại I có
MN=MP
MI chung
Do đó: ΔMIN=ΔMIP
b: Xét ΔMKN vuông tại K và ΔMKH vuông tại K có
MK chung
KN=KH
Do đó: ΔMKN=ΔMKH
=>MN=MH
mà MN=MP
nên MH=MP
a: Xét ΔMIN vuông tại I và ΔMIP vuông tại I có
MN=MP
MI chung
Do đó: ΔMIN=ΔMIP
b: Xét ΔMKN vuông tại K và ΔMKH vuông tại K có
MK chung
KN=KH
Do đó: ΔMKN=ΔMKH
=>MN=MH
mà MN=MP
nên MH=MP
cho tam giác MNP cân tại M ( góc M < 90 độ ) , các dduongf cao ND, PE (D thuộc MP ,E thuộc MN ) cắt nhau tại H chứng minh các đường thẳng NK,MH,PQ đồng quy biết trên tia đối tia EH lấy điểm K sao cho KH < HP trên tia đối tia DH lấy điểm Q sao cho QH = KH
Cho tam giác MNP vuông tại M. Gọi K là trung điểm của MP. Trên tia đối của tia KN lấy điểm H sao cho KN=KH. Chứng mi rằng:
a, tam giác MKN= tam giác PKH
b, MH = NP và MH // NP
c,HP vuông góc với MP
cho tam giác MPQ vuông tại M, tia phân giác góc Q cắt MP tại K,kẻ KT QP a/ tam giác MQK = tam giác IQK
b/Trên tia đối của tia MQ lấy N sao cho q n bằng qb chứng minh nk = kB
c/chứng minh MP//MI
Cho tam giác MNP vuông tại M. Gọi K là trung điểm của MP. Trên tia đối của tia KN lấy điểm H sao cho KN = KH. Chứng minh rằng :
a. tam giác MKN = tam giác PKH
b. MH = NP và MH // NP
c. HP vuông góc MP
Cho tam giác MNP can tại M, kẻ đường cao MI.
a, Chứng minh tam giác MIN= tam giác MIP
b, Kẻ IH vuông góc Mp, Ik vuông góc MN (H thuộc Mp, K thuộc MN). Chứng minh NH=NK
c, So sánh KH và NP
Cho tam giác MNP cân tại M . MI là đường trung tuyến của tam giác MNP. kẻ NK vuông góc MP và cắt MI tại O.
chứng minh MI vuông góc np.
C/m PO vuông góc MN tại J.
C/m PK=NJ.
C/m Jk song song NP.
Kẻ phân giác góc MNO cắt MO tại H tính số đo góc MKH
Cho tam giác MNP vuông tại M.CÓ MN=9cm,NP=15cm
a)Tính MP,so sánh góc N và góc P
b)Kẻ tia đối MH,trên tia MH lấy Q sao cho HQ=MH
Chứng minh những điều sau:
MP=QP ,góc PMH=góc PQH
PN là phân giác góc MPN
góc MNP=góc QNP
c)Lấy E là trung điểm HQ.Qua E kẻ đường thẳng song song với MH cắt MP tại E và cắt QP tại K.Chứng minh F là trung điểm MP.
d)Gọi giao của QF và HP là G.Chứng minh M,G,K thẳng hàng.
Cho ∆MNP vuông tại M, MN < MP phân giác NI, I thuộc MP gọi H là hình chiếu của I trên Np lấy B thuộc MP sao cho MB=MN từ B kẻ đường thẳng d vuông góc với MP và cắt tia IH tại K. Chứng minh góc INK= 45°
Cho ∆MNP vuông tại M, MN < MP phân giác NI, I thuộc MP gọi H là hình chiếu của I trên Np lấy B thuộc MP sao cho MB=MN từ B kẻ đường thẳng d vuông góc với MP và cắt tia IH tại K. Chứng minh góc INK= 45°
Cho ∆MNP vuông tại M, MN < MP phân giác NI, I thuộc MP gọi H là hình chiếu của I trên Np lấy B thuộc MP sao cho MB=MN từ B kẻ đường thẳng d vuông góc với MP và cắt tia IH tại K. Chứng minh góc INK= 45°