Cho mệnh đề A: " ∀ x ∈ ℝ : x ≥ 2 ⇒ x 2 ≥ 4 " . Mệnh đề phủ định của mệnh đề A là:
A. " ∀ x ∈ ℝ : x < 2 ⇒ x 2 < 4 "
B. " ∃ x ∈ ℝ : x ≥ 2 ⇒ x 2 < 4 "
C. " ∃ x ∈ ℝ : x < 2 ⇒ x 2 < 4 "
D. " ∀ x ∈ ℝ : x < 2 ⇒ x 2 < 4 "
Mệnh đề P ( x ) : " ∀ x ∈ R , x 2 − x + 7 < 0 " . Phủ định của mệnh đề P là:
A. ∃ x ∈ R , x 2 − x + 7 > 0
B. ∀ x ∈ R , x 2 − x + 7 > 0
C. ∀ x ∉ R , x 2 − x + 7 ≥ 0
D. ∃ x ∈ R , x 2 − x + 7 ≥ 0
Cho mệnh đề “ ∀ x ∈ ℝ , x 2 < x ”. Trong các mệnh đề sau, mệnh đề nào là phủ định của mệnh đề?
A. ∃ x ∈ ℝ , x 2 < x
B. ∃ x ∈ ℝ , x 2 ≥ x
C. ∀ x ∈ ℝ , x 2 < x
D. ∀ x ∈ ℝ , x 2 ≥ x
Phủ định của mệnh đề “ ∀x ∈ R , x2 – x – 6 < 0” là:
A. ∃x ∈ R , x2 – x – 6 > 0
B. ∀x ∈ R , x2 – x – 6 > 0
C. ∃x ∉ R , x2 – x – 6 ≥ 0
D. ∃x ∈ R , x2 – x – 6 ≥ 0
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ R: 3x = x2 + 1
Phủ định của mệnh đề “ ∃x
∈ R, x2 + 2x + 5 là số nguyên tố” là
A. ∀x ∈ R , x2 + 2x + 5 là hợp số
B. ∃x ∈ R , x2 + 2x + 5 là hợp số
C. ∀x ∉ R , x2 + 2x + 5 là hợp số
D. ∃x ∈ R , x2 + 2x + 5 là số thực
Cho mênh đề “ ∀ x ∈ ℝ , x 2 + x ≥ − 1 4 ”. Lập mệnh đề phủ định của mệnh đề A và xét tính đúng sai của nó
A. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≥ − 1 4 " Đây là mệnh đề đúng
B. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≤ − 1 4 " Đây là mệnh đề đúng
C. A ¯ : " ∃ x ∈ ℝ , x 2 + x < − 1 4 " Đây là mệnh đề đúng
D. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≥ − 1 4 " Đây là mệnh đề sai
Xét mệnh đề P: " ∀ x ∈ ℝ , x 2 + 1 > 0 " . Mệnh đề phủ định P ¯ của mệnh đề P là:
A. " ∀ x ∈ ℝ , x 2 + 1 ≤ 0 "
B. " ∃ x ∈ ℝ , x 2 + 1 ≤ 0 "
C. " ∀ x ∈ ℝ , x 2 + 1 > 0 "
D. " ∃ x ∈ ℝ , x 2 + 1 < 0 "
Mệnh đề phủ định của mệnh đề P(x): “ x 2 + 3x + 1 > 0 với mọi x” là:
A. Tồn tại x sao cho x 2 + 3x + 1 > 0
B. Tồn tại x sao cho x 2 + 3x + 1 ≤ 0
C. Tồn tại x sao cho x 2 + 3x + 1 = 0
D. Tồn tại x sao cho x 2 + 3x + 1 < 0