Cho mặt cầu S : x + 1 2 + y - 2 2 + z - 3 2 = 25 và mặt phẳng α : 2 x + y - 2 z + m = 0 . Các giá trị của m để α và (S) không có điểm chung là:
A. m ≤ - 9 h o ặ c m ≥ 21
B. m < - 9 h o ặ c m > 21
C. - 9 ≤ m ≤ 21
D. - 9 < m < 21
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 2 1 = y - 2 2 = z + 2 - 1 và mặt phẳng ( α ) :2x+2y-z-4=0. Tam giác ABC có A(-1;2;1), các đỉnh B, C nằm trên (α) và trọng tâm G nằm trên đường thẳng d. Tọa độ trung điểm M của BC là
A. M(2;1;2)
B. M(0;1;-2)
C. M(1;-1;-4)
D. M(2;-1;-2)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
A. a + b + c = 8.
B. a + b + c = 5.
C. a + b + c = 6.
D. a + b + c = 7.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : 2x - 2y + z + 3 = 0 và mặt cầu S : x - 1 2 + ( y + 3 ) 2 + z 2 = 9 và đường thẳng d : x - 2 = y + 2 1 = z + 1 2 . Cho các phát biểu sau đây:
I. Đường thẳng d cắt mặt cầu (S) tại 2 điểm phân biệt.
II. Mặt phẳng (P) tiếp xúc với mặt cầu (S)
III. Mặt phẳng (P) và mặt cầu (S) không có điểm chung
IV. Đường thẳng d cắt mặt phẳng (PA) tại 1 điểm
Số phát biểu đúng là:
A. 4
B. 1
C. 2
D. 3
Trong không gian Oxyz cho điểm M (2;1;1), mặt phẳng α : x + y + z - 4 = 0 và mặt cầu ( s ) : ( x - 3 ) 2 + ( y - 3 ) 2 + ( z - 4 ) 2 = 16 . Phương trình đường thẳng α đi qua M và nằm trong α cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất. Đường thẳng α đi qua điểm nào trong các điểm sau đây?
A. (4; -3; 3)
B. (4; -3; -3)
C. (4; 3; 3)
D. (-4; -3; -3)
Trong không gian với hệ tọa độ Oxyz cho mặt cầu S : x − 1 2 + y 2 + z + 2 2 = 2 và mặt phẳng α : x + y − 4 z + m = 0 . Tìm các giá trị của m để α tiếp xúc với (S)
A. m ≤ - 15 hoặc m ≥ − 3
B. - 15 ≤ m ≤ - 3
C. m = - 3 hoặc m = - 15
D. m = 2 3 hoặc m = - 12
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 - 2 x - 4 y + 6 z - 13 = 0 và đường thẳng d : x + 1 1 = y + 2 1 = z - 1 1 . Tọa độ điểm M trên đường thẳng d sao cho từ M có thể kẻ được 3 tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, C là các tiếp điểm ) thỏa mãn A M B ^ = 60 ° , B M C ^ = 90 ° ; C M A ^ = 120 ° có dạng M(a;b;c) với a<0. Giá trị T=a+b+c bằng:
A. T=1
B. T = 10 3
C. T=2
D. T=-2
Trong không gian Oxyz, cho hai điểm A(1;2;−3),B(−2;−2;1) và mặt phẳng α :2x+2y-z+9=0. Xét điểm M thuộc (α) sao cho tam giác AMB vuông tại M và độ dài đoạn thẳng MB đạt giá trị lớn nhất. Phương trình đường thẳng MB là
A. x = - 2 - t y = - 2 + 2 t z = 1 + 2 t
B. x = - 2 + 2 t y = - 2 - t z = 1 + 2 t
C. x = - 2 + t y = - 2 z = 1 + 2 t
D. x = - 2 + t y = - 2 - t z = 1
Trong không gian tọa độ Oxyz, cho mặt cầu S : x - 1 2 + y 2 + z + 2 2 = 2 và α : x + y - 4 z + m = 0 . Tìm các giá trị của m để tiếp xúc với .
A. m ≤ - 15 h o ặ c m ≥ - 3
B. m = - 3 h o ặ c m = - 15
C. m = 2 3 h o ặ c m = - 12
D. - 15 ≤ m ≤ - 3