ta áp dụng công thức \(log_a^{x_1x_2...x_n}=log_a^{x_1}+log_a^{x_2}+...+log_a^{x_n}\) ta có
\(log_2^{600}=log_2^{25.8.3}=log_2^{25}+log_2^8+log_2^3=2log_2^5+3+log_2^3=2b+3+a\)
ta áp dụng công thức \(log_a^{x_1x_2...x_n}=log_a^{x_1}+log_a^{x_2}+...+log_a^{x_n}\) ta có
\(log_2^{600}=log_2^{25.8.3}=log_2^{25}+log_2^8+log_2^3=2log_2^5+3+log_2^3=2b+3+a\)
rút gọn biểu thức sau
\(log_2\left(2a^2\right)+\left(log_2^a\right)a^{log_a\left(log_2^a+1\right)}+\frac{1}{2}log^2_2a^4\)
cho \(log_2^{27}=a\). hãy tính \(log^{\sqrt[6]{2}}_{\sqrt{3}}\)
tìm x
\(\log_2\left(3x-1\right)+\frac{1}{\log_{\left(x+3\right)}2}=2+\log_2\left(x+1\right)\)
Giải bất phương trình sau :
\(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)\le2\)
Cho log 2 = a , log 3 = b . Biểu diễn log 625 270 theo a và b là:
A. 1 4 3 b + 1 1 - a
B. a + 2 b 2 3 a 1 - b
C. a + b 2 4 a 1 - b
D. a + b 2 2 a 1 - b
Cho các số thực dương a,b thỏa mãn log a = x , log b = y . Tính l o g ( a 2 b 3 ) ?
A. 6xy
B. x 3 y 3
C. x 3 + y 3
D. 2x+3y
Cho log5 = a. Tính log 25000 theo a
A. 5 a
B. 5 a 2
C. 2 a 2 + 1
D. 2 a + 3
Cho a,b là các số thực thỏa mãn log 2 . log 2 a - log b = 2 . Hỏi a,b thỏa mãn hệ thức nào dưới đây?
A. a = 100b
B. a = 100 - b
C. a = =100 + b
D. a = 100 b
Đặt a = log 2 5 , b = log 3 5 . Hãy biểu diễn log 6 5 theo a và b.
A. log 6 5 = 1 a + b
B. log 6 5 = a b a + b
C. log 6 5 = a 2 + b 2
D. log 6 5 = a + b