tương tự như bài này nhé
https://diendantoanhoc.net/topic/121539-1cho-xsqrty21ysqrtx211-tinh-axsqrtx21ysqrty21/
tương tự như bài này nhé
https://diendantoanhoc.net/topic/121539-1cho-xsqrty21ysqrtx211-tinh-axsqrtx21ysqrty21/
a) Cho x,y thỏa mãn đẳng thức \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\).Tính x+y
b) Cho x,y thỏa mãn đẳng thức\(\left(\sqrt{x^2+2017}-x\right)\left(\sqrt{y^2+2017}-y\right)=2017\).Tính x+y
giải hệ phương trình :
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[2016]{x}-\sqrt[2016]{y}=\left(\sqrt[2017]{y}-\sqrt[2017]{x}\right)\left(x+y+xy+2017\right)\end{cases}}\)
Cho\(\left(x+\sqrt{x^2+\sqrt{2016}}\right)\left(y+\sqrt{y^2+\sqrt{2016}}\right)=\)\(\sqrt{2016}\)Tính tổng P=x+y
Giải pt
1)x+y+z+8=\(2\sqrt{x-1}\)+\(4\sqrt{y-2}\)+\(6\sqrt{z-3}\)
2)\(\sqrt{x}+\sqrt{x+1}=1\)
3)\(\left(1+\sqrt{x^2+2017+2016}\right)\)\(\left(\sqrt{2016+x}-\sqrt{x+1}\right)\)=2015
Cho 2 số dương x,y. Chứng minh: \(\dfrac{2015}{2016}\sqrt{\dfrac{x}{y}}+\dfrac{2016}{2017}\sqrt{\dfrac{y}{x}}>1+\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{6\sqrt{xy}}\)
cho \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
Tính S=x+y
Cho a,b,c >0; biết \(\hept{\begin{cases}a^2=b+4032\\x+y+z=a\\x^2+y^2+z^2=b\end{cases}}\)
\(P=x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}+y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{\left(2016+y^2\right)}}+z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{\left(2016+z^2\right)}}\)
Chứng minh giá trị của P không phụ thuộc vào x,y,z
cho \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
Tính giá trị biểu thức A=x+y
Tìm x ; y biết: \(\hept{\begin{cases}x^{2017}+y^{2017}=1\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\end{cases}}\)