\(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
Nhân cả hai vế của đẳng thức trên với \(\sqrt{x^2+2016}-x\ne0\)được :
\(2016\left(y+\sqrt{y^2+2016}\right)=2016\left(\sqrt{x^2+2016}-x\right)\)(1)
Tương tự nhân cả hai vế của đẳng thức ban đầu với \(\sqrt{y^2+2016}-y\ne0\)được ;
\(2016\left(\sqrt{x^2+2016}+x\right)=2016\left(\sqrt{y^2+2016}-y\right)\)(2)
Cộng (1) và (2) theo vế : \(2016\left(x+y\right)+2016\left(\sqrt{y^2+2016}+\sqrt{x^2+2016}\right)=-2016\left(x+y\right)+2016\left(\sqrt{y^2+2016}+\sqrt{x^2+2016}\right)\)
\(\Rightarrow4032\left(x+y\right)=0\Rightarrow x+y=0\)