Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông, BA=BC=a, cạnh bên A A ' = a 2 , M là trung điểm của BC. Khoảng cách giữa hai đường thẳng AM và B’C bằng
A. a 2 2
B. a 3 3
C. a 5 5
D. a 7 7
Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông với AB = BC = a, cạnh bên A A ' = a 2 . Gọi M là trung điểm BC. Tính khoảng cách giữa hai đường thẳng AM, B'C.
Cho lăng trụ đứng tam giác ABC.A'B'C' có đáy là một tam giác vuông cân tại B, AB = BC = a, AA' = a 2 , M là trung điểm BC. Tính khoảng cách giữa hai đường thẳng AM và B'C
A . a 7
B . a 3 2
C . 2 a 5
D . a 3
Cho hình lăng trụ đứng ABC. A’B’C’ có đáy là ABC là tam giác vuông BA = BC =a, cạnh bên A A ' = a 2 .Gọi M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM, B’C’.
![]()
![]()
![]()
![]()
Cho hình lăng trụ đứng ABC.A’B’C’có đáy là tam giác vuông và AB=BC=a, AA'= a 2 . Gọi M là trung điểm của BC. Tính khoảng cách d của hai đường thẳng AM và B’C




Cho lăng trụ ABC.A’B’C’ có cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A, AB = a, AC = \(a\sqrt{3}\). Hình chiếu vuông góc của A’ lên (ABC) trùng với trung điểm I của BC. Khoảng cách giữa BB’ và AC’ bằng
Cho hình lăng trụ đứng ABC.A’B’C’. Cạnh bên AA’=a, ABC là tam giác vuông tại A có BC=2a, A B = a 3 . Tính khoảng cách từ đỉnh A đến mặt phẳng (A’BC).
A. a 7 21
B. a 21 21
C. a 21 7
D. a 3 7
Cho hình lăng trụ ABC.A’B’C’ độ dài cạnh bên là 2a, dáy ABC là tam giác vuông tại A, AB = a, AC = a 3 . Hình chiếu của A’ lên (ABC) trùng với trung điểm I của BC. Khi đó cos(AA';B'C') là:
A . 1 2
B . 1 4
C . 2 2
D . 3 2
Cho hình lăng trụ đứng ABC.A'B'C', đáy ABC là tam giác vuông tại A, cạnh AA' hợp với B'C một góc 60 0 và khoảng cách giữa chúng bằng a, B'C = 2a. Thể tích của khối lăng trụ ABC.A'B'C' theo a
A . a 3 2
B . 3 a 3 2
C . 3 a 3 4
D . a 3 4