Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật với A B = a , A D = a 3 . Hình chiếu vuông góc của A' lên (ABCD) trùng với giao điểm của AC và BD. Tính khoảng cách từ điểm B' đến mặt phẳng (A'BD)
A. a 3
B. a 2
C. a 3 2
D. a 3 6
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a 3 , BD=3a. Hình chiếu vuông góc của B trên mặt phẳng (A'B'C'D') trùng với trung điểm A’C’. Gọi α là góc giữa 2 mặt phẳng (ABCD) và (CDD'C'). Thể tích của khối hộp ABCD.A'B'C'D' bằng
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, góc BCD= 120 o và AA'= Hình chiếu vuông góc của A' lên mặt phẳng ABCD trùng với giao điểm của AC và BD.
Tính theo a thể thích khối hộp ABCD.A'B'C'D'
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, B C D ⏜ = 120 ∘ và AA' = 7 a 2 . Hình chiếu vuông góc của A' lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A'B'C'D'
A. V = 12 a 3
B. V = 3 a 3
C. V = 9 a 3
D. V = 6 a 3
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, B C D ^ =120 ° và AA'= 7 α 2 Hình chiếu vuông góc của A' lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A'B'C'D'
Cho hình hộp ABCD.A'B'C'D' có đáy là hình chữ nhật, hình chiếu của A' lên đáy (ABCD) trùng với trung điểm của cạnh AD. Biết rằng AB = a, AD = 2a và thể tích hình hộp đã cho bằng 2 a 3 . Khoảng cách từ B đến mặt phẳng (A'DCB') bằng:
A. 2 a 6 B. 2 a 3
C. 3 a 3 D. a 2
Cho lăng trụ A B C D . A ' B ' C ' D ' có đáy là hình vuông cạnh a 3 . Hình chiếu vuông góc của điểm A lên mặt phẳng ( A ' B ' C ' D ' ) trùng với tâm O của hình vuông A ' B ' C ' D ' . Biết rằng khoảng cách từ trọng tâm G của tam giác AB’D’ đến mặt phẳng (AA’D) bằng a 2 . Khoảng cách từ điểm O đến mặt phẳng ( A D C ' B ' ) bằng
: Cho hình chóp sabcd có đáy ABCD là hình chữ nhật, ab=a, bc=a căn 3, sa vuông góc với (abcd) Góc giữa SC và mặt đáy bằng 45. Khoảng cách từ điểm A đến mặt phẳng (scd) bằng
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, B C D ^ = 120 ∘ và AA' = 7 a 2 Hình chiếu vuông góc của A' lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD.Tính theo a thể tích khối hộp ABCD.A'B'C'D'