Phương pháp:
Sử dụng công thức tính thể tích khối chóp có chiều cao h và diện tích đáy S là V = 1 3 h . S
Sử dụng công thức tỉ lệ thể tích: Cho hình chóp S.ABCD có M, N, P lần lượt thuộc các cạnh SA, SB, SC.
Cách giải:
Phương pháp:
Sử dụng công thức tính thể tích khối chóp có chiều cao h và diện tích đáy S là V = 1 3 h . S
Sử dụng công thức tỉ lệ thể tích: Cho hình chóp S.ABCD có M, N, P lần lượt thuộc các cạnh SA, SB, SC.
Cách giải:
Cho tứ diện OABC có OA=a; OB=2a; OC=3a đôi một vuông góc với nhau tại O. Lấy M là trung điểm của cạnh AC; N nằm trên cạnh CB sao cho CN=2/3 CB. Tính theo a thể tích khối chóp OAMNB
A. 2 a 3
B. a 3 6
C. 2 a 3 3
D. a 3 3
Tứ diện OABC có O A = 1 , O B = 2 , O C = 3 và đôi một vuông góc với nhau. Gọi M, N, P lần lượt là trung điểm của A B , B C , C A . Tính thể tích khối tứ diện OMNP.
A. 1
B. 1/3
C. 1/4
D. 1/6
Cho tứ diện OABC có ba cạnh OA;OB;OC đôi một vuông góc với nhau, O A = a 2 2 , O B = O C = a . Gọi H là hình chiếu của điểm O trên mặt phẳng (ABC)Tính thể tích khối tứ diện OABH
A. a 3 2 6
B. a 3 2 12
C. a 3 2 24
D. a 3 2 48
cho tứ diện OABC có OA,OB,OC đôi một vuông góc và OA=OB=OC=a. gọi I là trung điểm BC; H,K lần lượt là hình chiếu của O lên AB,AC.
1. Chứng minh:BC vuông góc (OAI), (OAI) vuông góc (OHK)
2. Tính d(O,(ABC))
3.Tính cosin (OA,(OHK))
4.Tính tan((OBC),(ABC))
5.Tìm đường vuông góc chung của HK,OI. tính khoảng cách giữa hai đường ấy
Cho tứ diện OABC biết OA, OB, OC đôi một vuông góc với nhau, biết O A = 3 , O B = 4 và thể tích khối tứ diện OABC bằng 6. Khi đó khoảng cách từ O đến mặt phẳng (ABC) bằng:
A. 3
B. 41 12
C. 144 41
D. 12 41
Cho tứ diện OABC có OA;OB;OC đôi một vuông góc và O A = a , O B = b , O C = c . Tính thể tích khối tứ diện OABC.
A. abc
B. abc/3
C. abc/6
D. abc/2
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và O A = a , O B = 2 a , O C = 3 a . Thể tích của khối tứ diện OABC bằng
A. V = 2 a 3 3
B. V = a 3 3
C. V = 2 a 3
D. V = a 3
Cho tứ diện OABC có các góc tại đỉnh O đều bằng 90 ° và O A = a , O B = b ; O C = c . Gọi G là trọng tâm của tứ diện. Thể tích của khối tứ diện GABC bằng
A. a b c 6
B. a b c 8
C. a b c 4
D. a b c 24
Cho khối tứ diện OABC có OA, OB, OC đôi một vuông góc và OA = a, OB = b, OC = c. Thể tích V của khối tứ diện OABC được tính bởi công thức nào sau đây?
A. V = 1 6 a . b . c
B. V = 1 3 a . b . c
C. V = 1 2 a . b . c
D. V = 3 a . b . c