a: AB*DC=1/4*AD^2=(1/2*AD)^2=AO*DO
=>AB/DO=AO/DC
=>ΔABO đồng dạng với ΔDOC
b: ΔABO đồng dạng với ΔDOC
=>góc AOB=góc DCO
=>góc AOB+góc DOC=90 độ
=>góc BOC=90 độ
c: Xét ΔOCB vuông tại O và ΔABO vuông tại A có
góc OBC=góc AOB
=>ΔOCB đồng dạng với ΔABO
a: AB*DC=1/4*AD^2=(1/2*AD)^2=AO*DO
=>AB/DO=AO/DC
=>ΔABO đồng dạng với ΔDOC
b: ΔABO đồng dạng với ΔDOC
=>góc AOB=góc DCO
=>góc AOB+góc DOC=90 độ
=>góc BOC=90 độ
c: Xét ΔOCB vuông tại O và ΔABO vuông tại A có
góc OBC=góc AOB
=>ΔOCB đồng dạng với ΔABO
Cho hthang ABCD (AB//CD), góc A =góc D=90 độ. Biết AB =4cm, CD=9cm và AC vuông góc với BD tại O.
a) Chứng minh :ΔABD đồng dạng ΔDAC. Tính Sabcd.
b) AD cắt BC tại I. Tính IA, IB .
c) Gọi E là trung điểm của CD. CMR: IE, BD, AC đồng quy tại O.
Cho tứ giác ABCD, gócABD=gócACB, AB giao với BD tại O.
a) Chứng minh: tam giác AOD đồng dạng tam giác BOC.
b) Chưng minh tam giác AOB đồng dạng tam giác DOC
c) Gọi E là giao của AB và CD. Chứng minh EA.EB=ED.EC
Cho tứ giác ABCD, gócABD=gócACB, AB giao với BD tại O.
a) Chứng minh: tam giác AOD đồng dạng tam giác BOC.
b) Chưng minh tam giác AOB đồng dạng tam giác DOC
c) Gọi E là giao của AB và CD. Chứng minh EA.EB=ED.EC
Tứ giác ABCD có 2 đường chéo AC và BD cắt nhau tại O, góc ABD= góc ACD. Gọi E là giao điểm của AD và BC
Chứng minh: a) tam giác AOB đồng dạng với tam giác DOC
b) Tam giác AOP đồng dạng với tam giác BOC
c) EA.ED=ED.EC
Cho hình thang ABCD, AB//CD có góc A=góc D= 90 độ, AB=4cm, CD=9cm, BC=13cm. M là trung điểm của AD. Kẻ BK vuông góc với CD tại K.
a) Tứ giác ABKD là hình gì? Tính KC, BK, AD và AM
b) Chứng minh tam giác ABM đồng dạng với tam giác DMC
c) Tính góc BMC
Cho hình thang vuông ABCD có góc A= góc D= 900 , AB > CD. Kẻ AH vuông góc với BD tại H, AH cắt DC tại điểm E. a) Chứng minh AHD đồng dạng với BAD. b) Chứng minh hệ thức 2 AD AB.DE c) Biết AD = 3cm, AB = 4cm, tính độ dài đoạn DE và diện tích tứ giác ABED. d) Gọi N là hình chiếu của B lên đường thẳng CD, trên tia đối của tia EA lấy điểm M sao cho AE.EN = DE.EM. Chứng minh BE vuông góc với MD.
giúp mình câu a b c với
tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O, góc ABD= góc ACD. Gọi E là giao điểm của AD và BC. Chứng minh:
a) Tam giác AOB đồng dạng với tam giác DOC.
b) Tam giác AOD đồng dạng với tam giác BOC.
c)EA.ED=EB.EC
Cho hình thang vuông ABCD ( góc A = góc D = 90), AB=4cm,CD=9cm,AD=6cm a) CM: tam giác BAD đồng dạng tam giác ADC b) CM: AC vuông góc với BD c) Gọi O là giao điểm của AC và BD. Tính tỉ số diện tích 2 hai tam giác AOB và COD. d) Gọi K là giao điểm của DA và CB. Tính KA.
cho hình chữ nhật ABCD. gọi E là trung điểm của CD. qua E kẻ đường thẳng vuông góc với AE, đường thẳng này cắt đường thẳng BC và AB lần lượt taiju F và M.
a, chứng minh 2 tam giác ADE và MEA đồng dạng.
b, chứng minh EF.EM=EC.AM.
c, biết AB=6cm, AD=4cm. tính tỉ số diện tích tam giác MBE và MFA(giúp minh với mình sắp phải nộp)