dung phép thế, tính x,y theo m ta được: x=m, y=m+1
\(x^2+y^2=m^2+\left(m+1\right)^2=m^2+m^2+2m+1=2m^2+2m+1=2\left(m^2+m+\frac{1}{4}\right)+\frac{1}{2}=2\left(m+\frac{1}{2}\right)^2+\frac{1}{2}\)
=> Min x^2+y^2= 1 <=> m=0
dung phép thế, tính x,y theo m ta được: x=m, y=m+1
\(x^2+y^2=m^2+\left(m+1\right)^2=m^2+m^2+2m+1=2m^2+2m+1=2\left(m^2+m+\frac{1}{4}\right)+\frac{1}{2}=2\left(m+\frac{1}{2}\right)^2+\frac{1}{2}\)
=> Min x^2+y^2= 1 <=> m=0
1. Cho hpt:
x-2y=-m-2
x+y=2m+1
Tìm m để hpt có ngiệm(x;y) thoả x2 +y2 nhỏ nhất, tìm giá trị đó.
2.Cho hpt:
x+my=3
mx+2my=m+4
a. Giải và biện luận hpt theo tham số m.
b. Tìm các giá trị nguyên của m để hpt đã cho có nghiệm x,y đều là các số nguyên.
Cho hệ phương trình \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) (với m là tham số)
Tìm m để hệ đã cho có nghiệm (x;y) thỏa mãn: x2 + y2 + 3 đạt giá trị nhỏ nhất.
1/ Cho HPT \(\hept{\begin{cases}x-my=2\\mx+2y=1\end{cases}}\)
Chứng minh HPT luôn có nghiệm duy nhất (x:y) với mị tham số m. Tìm m để nghiệm (x;y) thoả mãn 3x + 2y -1\(\ge0\)
2/ Cho đường thẳng d: y=mx-m+1 và parabol (P) : y=\(^{x^2}\)
a/ Chứng minh d và (P) luôn có điểm chung với mọi m. Với giá trị nào của m thì d và (P) tiếp xúc nhau? Khi đó tìm toạ độ tiếp điểm
b/ Gọi x1,x2 là hoành độ giao điểm của d và (P). Tìm GTLN VÀ GTNN của biểu thức \(A=\frac{2x_1x_2+3}{x^2_1+x^2_2+2x_1x_2+2}\)
1. cho phương trình x^2-2(m-3)x-2m-10=0 tìm giá trị nhỏ nhất của biểu thức A = x1^2 +x2^2-x1x2
2. cho phương trình x^2-(2m-1)x +m^2-m =0 . tìm m để phương trình có 2 nghiệm phân biệt x1;x2 thoả mãn |x1 -2x| bé hơn hoặc bằng 5
3. cho phương trình x^2 - (2m-1)x -2m -11 =0 . tìm m để phương trình có 2 nghiệm phân biệt x1 ;x2 thoả mãn |x1 -x2| bé hơn hoặc bằng 4
4.hai ca nô cùng rời bến A đến bến B .ca nô thứ nhất mỗi giờ chạy nhanh hơn ca nô thứ hai 5km nên đến B sớm hơn ca nô thứ hai 30 phút .tính vận tốc mỗi ca nô biết quãng đường AB dài 75 km
Cho hệ phương trình \(\left\{{}\begin{matrix}3x+2y=4\\2x-y=m\end{matrix}\right.\)
Tìm m để hpt có nghiệm (x:y) với x<1,y<1
cho hpt:
x - 2y = 1 + 3m
2x + y = m + 2
Tìm giá trị của m để x2 - y2 có giá trị nhỏ nhất. Biết (x ; y) là nghiệm của hệ phương trình trên!!!
Cho HPT : x+my=2 và mx-2y=1 . Biết rằng tồn tại các giá trị nguyên của m để hệ có nghiệm duy nhất (x;y) thoả mãn x>0 và y>0 .Số các giá trị nguyên đó là gif ?
cho HPT \(\hept{\begin{cases}mx-y=m^2\\2x+my=m^2+2m+2\end{cases}}\)
a, CMR hpt luôn có nghiệm duy nhất với mọi m
b, tìm m để biểu thức \(B=x^2+3y+4\) đạt giá trị nhỏ nhất
2) cho hpt: \(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm \(\left(x_0,y_0\right)\) t/m: A= \(x_0^2+y_0^2\) đạt giá trị nhỏ nhất.
giúp mk vs mk cần gấp