1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm \(\left(x_0,y_0\right)\) t/m: \(x_0^2+y_0^2=9m\)
giúp mk vs mk cần gấp
2) cho hpt: \(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: A= \(x_0^2+y^2_0\) đạt GTNN
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: \(x_0^2+y_0^2=9m\)
2) cho hpt: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất \(\left(x_0,y_0\right)\) t/m: \(x_0^2-2x_0-y_0>0\)
giúp mk vs mk cần gấp
giải chi tiết
cho hệ phương trình \(\left\{{}\begin{matrix}x+y=2\\2x+3y=m\end{matrix}\right.\). Có bao nhiêu số nguyên dương m để hệ đã cho có nghiệm duy nhất là (\(x_0;y_0\)) \(x_0+2y_0< 5\)
Cho hệ phương trình: \(\hept{\begin{cases}mx+y=5\\2x-y=-2\end{cases}}\)
Xác định giá trị của m để nghiệm \(\left(x_0;y_0\right)\)của hệ phương trình thỏa điều kiện: \(x_0+y_0=1\)
Giả sử ( \(x_0\),y\(_0\) ) là nghiệm của hệ phương trình \(\left\{{}\begin{matrix}x-y+xy=13\\x^2+y^2=25\end{matrix}\right.\) Giá trị nhỏ nhất của tổng \(T=x_0+y_0\) là
Cho hệ phương trình \(\hept{\begin{cases}mx+y=2m-1\\\left(2m+1\right)x+7y=m+3\end{cases}}\)
a) Tìm m để hệ có nghiệm duy nhất.
b) Khi hệ có nghiệm \(\left(x_0;y_0\right)\)hãy xác định hệ thức liên hệ \(\left(x_0;y_0\right)\)không phụ thuộc m?
Cho hệ phương trình \(\left\{{}\begin{matrix}3x+2y=4\\2x-y=m\end{matrix}\right.\)
Tìm m để hpt có nghiệm (x:y) với x<1,y<1
\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
tìm m để HPT có nghiệm (x;y) duy nhất thỏa mãn x<0 và y>0