=>3x+2y=4 và 4x-2y=2m
=>7x=2m+4 và 2x-y=m
=>x=2/7m+4/7 và y=2x-m=4/7m+8/7-m=-3/7m+8/7
x<1; y<1
=>2/7m+4/7<1 và -3/7m+8/7<1
=>2/7m<3/7 và -3/7m<-1/7
=>m<3/2 và m>1/3
=>3x+2y=4 và 4x-2y=2m
=>7x=2m+4 và 2x-y=m
=>x=2/7m+4/7 và y=2x-m=4/7m+8/7-m=-3/7m+8/7
x<1; y<1
=>2/7m+4/7<1 và -3/7m+8/7<1
=>2/7m<3/7 và -3/7m<-1/7
=>m<3/2 và m>1/3
cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=-1\\x+y=-m\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất thỏa mãn \(y^2=x\)
\(\left\{{}\begin{matrix}x+my=1\\x+2y=3\end{matrix}\right.\)
GIẢI HỆ PHƯƠNG TRÌNH KHI M=1
TÌM M ĐỂ HPT CÓ NGHIỆM THỎA MÃN X,Y THUỘC Z
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: \(x_0^2+y_0^2=9m\)
2) cho hpt: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất \(\left(x_0,y_0\right)\) t/m: \(x_0^2-2x_0-y_0>0\)
giúp mk vs mk cần gấp
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-1\right)x-2y=1\\3x+my=1\end{matrix}\right.\)
a) Giải hệ phương trình khi \(m=\sqrt{3}+1\)
b) Chứng minh rằng hệ phương trình có 1 nghiệm duy nhất với mọi \(m\)
c) Tìm \(m\) để \(x-y\) đạt giá trị nhỏ nhất
Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0
Cho hệ phương trình \(\left[{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0
Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0
Cho hệ phương trình \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) (với m là tham số)
Tìm m để hệ đã cho có nghiệm (x;y) thỏa mãn: x2 + y2 + 3 đạt giá trị nhỏ nhất.
Cho hệ phương trình tham số m \(\left\{{}\begin{matrix}mx+2y=1\\3x+\left(m+1\right)y=-1\end{matrix}\right.\)
a) giải hệ phương trình với m=3
b) Tìm m thuộc Z để hệ phương trình có nghiệm duy nhất là các số nguyên
CHỈ CẦN CÂU B THÔI AH