a: BE/AD=BN/NA
=>BE/BC=BN/AB
CE/AD=CM/MD
=>CE/BE=CH/DC
=>BN*CM=BC^2
=>BC/BN=CM/BC
=>ΔBCM đồng dạng với ΔBNC
=>góc BCM=góc BNC
=>BM vuông góc CN
góc BKI=góc BAI=góc BQI=90 độ
=>B,K,Q,I,A cùng nằm trên đường tròn đường kính BI
=>góc AKQ=90 độ
a: BE/AD=BN/NA
=>BE/BC=BN/AB
CE/AD=CM/MD
=>CE/BE=CH/DC
=>BN*CM=BC^2
=>BC/BN=CM/BC
=>ΔBCM đồng dạng với ΔBNC
=>góc BCM=góc BNC
=>BM vuông góc CN
góc BKI=góc BAI=góc BQI=90 độ
=>B,K,Q,I,A cùng nằm trên đường tròn đường kính BI
=>góc AKQ=90 độ
Cho hình vuông ABCD, gọi E là điểm bất kì trên cạnh BC, tia AE cắt DC tại M, tia DE cắt AB tại N, BM cắt CN tại K, NC cắt AD tại I.
1.Chứng minh: BC2=BN.CM và \(BM\perp CN\)
2.Gọi Q là hình chiếu của I trên BC. Tính \(\widehat{AKQ}\)
3.Xác định vị trí của E trên cạnh BC để chu vi tam giác BKC lớn nhất
Cho hình vuông ABCD. Lấy M ∈BC sao cho BM = \(\dfrac{1}{3}\) BC, lấy N∈tia đối tia CD sao cho CN = \(\dfrac{1}{2}\) BC. Cạnh AM cắt BN tại I và cạnh CI cắt AB tại K. H là hình chiếu của M trên AC. Gọi E là giao điểm của AI và DC.
Chứng minh: K, M, H thẳng hàng
cho hình vuông ABCD có cạnh bằng a. trên cạnh BC lấy điểm E, qua A kẻ đuờng thẳng vuông góc với AE, cắt CD tại F. I là trung điểm của EF, AI cắt CD tại K . CMinh AEF là tam giác vuông cân và KE KF. D,I,B thẳng hàng . trên AB lấy điểm M sao cho BE BM, tìm vị trí của E trên BC để tam giác DEM đạt giá trị lớn nhất
cho hình vuông ABCD, trên BC lấy M sao cho BM=BC/3. Trên tia đối của tia cd lấy điểm N sao cho CN=BC/2. Cạnh AM cắt BN tại I và CI cắt AB tại K. Gọi H là hình chiếu của M trên AC. Chứng minh K, M, H thẳng hàng.
mk cần gấp
Cho hình vuông ABCD trên BC lấy E, tia AE cắt các đường thẳng CD tại M và tia DE cắt AB tại N Chứng minh BM vuông góc với CN
cho hình vuông ABCD có cạnh bằng a. trên cạnh BC lấy điểm E, qua A kẻ đuờng thẳng vuông góc với AE, cắt CD tại F. I là trung điểm của EF, AI cắt CD tại K . CMinh
(AEF là tam giác vuông cân và KE=KF. D,I,B thẳng hàng).
(trên AB lấy điểm M sao cho BE=BM, tìm vị trí của E trên BC để tam giác DEM đạt giá trị lớn nhất
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho hình vuông ABCD. Trên BC lấy E, tia AE cắt đường CD tại M. Tia DE cắt đường AB tại N. Chứng minh
a) tam giác NBC đồng dạng với tam giác BCM
b) BM vuông góc với CN
giúp
Cho hinh vuông ABCD. Trên cạnh BC lấy điểm E . Tia AE cắt đường thẳng CD tại M , tia DE cắt đường thẳng AB tai N . Cmr :
a, Tam giác NBC đồng dạng với tam giác BCM
b, BM vuông góc CN
Cho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.
a) Chứng minh tứ giác MENF là hình thoi.
b) Chứng minh chi vi tam giác CME không đổi khi E chuyển động trên BCCho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.
a) Chứng minh tứ giác MENF là hình thoi.
b) Chứng minh chi vi tam giác CME không đổi khi E chuyển động trên BC