Cho hình vuông ABCD, giao điểm của AC và BD là O . Gọi các điểm G,H,I lần lượt là trung điểm của các cạnh AB, BC,CD. Gọi E là điểm đối xứng của O qua I.
a) Chứng minh tứ giác DAOE là hình bình hành.
b) Chứng minh AH vuông góc với DG.
c) Trên tia đối tia CA lấy điểm M, trên tia đối tia EC lấy điểm N sao cho OM=EN, gọi F là trung điểm của MN. Chứng minh rằng O, E, F thẳng hàng.
b: góc GAH+góc DGA
=90 độ-góc BHA+góc DGA
=90 độ
=>DG vuông góc với AH
a: Xét ΔCDA có CI/CD=CO/CA
nên OI//AD và OI=1/2AD
=>OE//AD và OE=AD
=>AOED là hình bình hành