cho hình vuông ABCD. góc xAy=45 độ quay quanh đỉnh A , các cạnh Ax, Ay cắt BC và CD thứ tự tại P và Q kẻ PM//AQ,QN//AP. đường thẳng MN cắt AP tại E và cắt AQ tại F
CMR : EF2=ME2+NF2
Cho tam giác ABC vuông tại A có AB = 10, AC = 24, đường cao AH.
a, Tính BC, AH, BH
b, Đường thẳng d song song với BC cắt các cạnh AB và AC lần lượt tại 2 điểm M và N. Gọi O là giao điểm của MC và NB. Tia Ny song song với AB cắt MC tại F, tia Mx song song với AC cắt BN tại E. Chứng minh rằng ON2 = OB .OE
c, Chứng minh EF // BC
d, Chứng minh MN2 = EF . BC
1.Cho tam giác ABC có AD là tia phân giác trong của góc A. Quá D kẻ đường thẳng song song với AB cắt AC ở E và đường thẳng song song với AC cắt AB ở F.
a) Tứ giác AEDF là hình gì? Vì Sao?
b) Đường tròn đường kính AD cắt AB và AC lần lượt tại các điểm M và N. Chứng minh rằng: MN//EF.
2. Cho hai đường tròn (O;R) và(O';R') tiếp xúc trong với nhau tại A, (R>R'). Qua điểm B bất kỳ trên(O') vẽ tiếp tuyến với (O') cắt (O) tại hại điểm M và N, AB cắt (O) tại C. Chứng minh rằng:
a) MN vuông góc với OC
b) AC là tia phân giác của góc MAN
1. Cho hình vuông ABCD. M là 1 điểm thay đổi trên cạnh BC, M không trùng với B và C. Qua A kẻ tia Ax vuông góc với AM, Ax cắt CD tại N, đường trung tuyến AI của tam giác AMN cắt CD ở K. Đường thẳng qua M song song với AB cắt AI ở G.
Chứng minh rằng:
a) Tứ giác MGNK là hình thoi;
b) AN2=NK.NC;
c) Chu vi tam giác MKC không đổi;
d) 3 điểm B,I,D thẳng hàng.
2. Cho hình thoi ABCD cạnh a, có A=60o. Một đường thẳng bất kỳ đi qua C cắt tia đối của các tia BA, DA tương ứng ở M, N.
a) Chứng minh: BM.DN=a2
b) Gọi K là giao điểm của BN và DM. Tính góc BKD.
3. Cho tam giác ABC, phân giác AD, CE. Trên AC lấy điểm K sao cho KD⊥CE. Trên AB lấy điểm M sao cho MD vuông góc với phân giác ngoài góc B. Tính AK biết AM=16, AD=8.
Cho đường tròn (O) tiếp xúc với 2 cạnh Ax, Ay của góc xAy lần lượt tại B và C. Vẽ qua C đường thẳng song song với Ax cắt (O) tại D; AD cắt cung BC nhỏ tại M; CM cắt AB tại N. Chứng minh rằng:
a) Hai tam giác ANC và MNA đồng dạng.
b) AN = BN.
Cho hình thang ABCD ( AB//CD) , các đường chéo cắt nhau tại O . Qua O kẻ đường thẳng song song với hai đáy , cắt các cạnh bên AC và BC theo thứ tự tại E và F .
Chứng minh rằng OE = OF
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
Giúp với mấy chế ơiiiiiiiiiiii
Cho hình thang ABCD (AB//CD) có O là giao điểm hai đường chéo.
a) Đương thẳng qua A song song với BC cắt BD tại E. Đường thẳng qua B song song với AD cắt AC tại F. Chứng minh: EF//AB; EF.CD=AB^2
b) Gọi K là giao điểm hai cạnh bên. KO cắt AB tại M và cắt DC tại N.Chứng minh: M, N là trung điểm AB, DC và tỉ số MK/MO=NK/NO.
Cho hình vuông ABCD, trên BC lấy E. Dựng Ax vuông góc với AE, Ax cắt CD kéo dài tại F. Kẻ trung tuyến AI của tam giác AEF, AI cắt CD tại K, qua E dựng đường thẳng song song với AB cắt AI tại G.Gọi giao điểm của È và AD là J . Chứng minh GJ vuông góc với JK
xét tam giác ABC có các góc B,C nhọn trên nửa mặt phẳng bờ BC không chứa điểm A người ta dựng hình vuông BCDE.Nối AE và AD theo thứ tự cắt BC tại M và N Qua M và N kẻ các đường thẳng vuông góc với BC tương ứng cắt AB và AC tại P và Q
a) Chứng minh PQ song song BC
b)Chứng minh MNPQ là hình vuông
c) Giả sử tam giác ABC cân tại A có BC=10cm, tg góc B =2/3 Tình cạnh hình vuông nội tiếp