a: Xét tứ giác BMDP có
BM//DP
BM=DP
=>BMDP là hình bình hành
b: Xet ΔADH có P là trung điểm của AD và PQ//DH
=>Q là trung điểm của AH
ΔABP=ΔDAN
=>góc ABP=góc DAN
=>góc ABP+góc BAQ=90 độ
=>ΔABQ vuông tại Q
=>BQ vuông góc AH
=>ΔBAH cân tại B
=>BA=BH
a: Xét tứ giác BMDP có
BM//DP
BM=DP
=>BMDP là hình bình hành
b: Xet ΔADH có P là trung điểm của AD và PQ//DH
=>Q là trung điểm của AH
ΔABP=ΔDAN
=>góc ABP=góc DAN
=>góc ABP+góc BAQ=90 độ
=>ΔABQ vuông tại Q
=>BQ vuông góc AH
=>ΔBAH cân tại B
=>BA=BH
Cho hình bình hành ABCD có AB = 2AD. Gọi M, N lần lượt là trung điểm của AB và CD.
a) Chứng minh tứ giác AMND là hình thoi.
b) Gọi E là giao điểm của AN và DM; F là giao điểm của BN và CM. Chứng minh EF // AB.
c) Hình bình hành ABCD có thêm điều kiện gì để tứ giác ABCN là hình thang cân?
Cho hình bình hành ABCD có AB = 2AD. Gọi M, N lần lượt là trung điểm của AB và CD.
a) Chứng minh tứ giác AMND là hình thoi.
b) Gọi E là giao điểm của AN và DM; F là giao điểm của BN và CM. Chứng minh EF // AB.
c) Hình bình hành ABCD có thêm điều kiện gì để tứ giác ABCN là hình thang cân?
Cho hình bình hành ABCD có AB = 2.BC.Gọi M và N lần lượt là trung điểm của AB và CD.
a) Chứng minh: tứ giác BMDN là hình bình hành
b) Chứng minh: tam giác CMD vuông
c) Gọi gaio điểm của AN với DM là P và giao điểm của BN và CM là Q. Chứng minh tứ giác MPNQ là hình chữ nhật?
Cho hình bình hành ABCD có cạnh AD = a và AB = 2a . Gọi M , N lần lượt là trung điểm của AB và CD
a) Chứng minh tam giác ADN cân và AN là tia phân giác của góc BAD .
b) Chứng minh rằng : MD // NB .
c) Gọi P là giao điểm của AN với DM , Q là giao điểm của CM với BN . Chứng minh tứ giác PMQN là hình chữ nhật .
Bài 1. Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của BC và AD. C/m tứ giác BMDN là hình bình hành.
Bài 2. Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Gọi P là giao điểm của DM và AN. Gọi Q là giao điểm của CM và BN. C/m tứ giác PMQN là hình bình hành.
Cho hình bình hành ABCD có cạnh AD = a và AB = 2a. Gọi M, N lần lượt là trung điểm của AB và CD.
a. Chứng minh rằng:
Tam giác ADN cân.
AN là phân giác của góc BAD.
b. Chứng minh rằng: MD // NB
c. Gọi giao điểm của AN với DM là P, CM với BN là Q. Chứng minh PMQN là hình chữ nhật.
Cho hình thang cân ABCD, biết AB//CD. Gọi O là giao điểm của hai đường chéo AC và BD.
1) Chứng minh rằng tam giác AOB cân tại O.
2) Gọi M, N, P lần lượt là trung điểm của AD, BD và BC. Gọi E là giao điểm của AN với cạnh DC. Chứng minh rằng M, N, P thẳng hàng và tứ giác ADEB là hình bình hành.
3)Chứng minh rằng AB+BC+CD+DA/4<AC<AB+BC+CD+DA/2
Cho tứ giác ABCD, gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. a) Chứng minh rằng MNPQ là hình bình hành. b) Gọi I là giao điểm của MP và QN. Gọi E là điểm trên tia IA sao cho EA = 2AI và J là giao điểm của tia MA và EP. Chứng minh rằng J là trung điểm của EP.
Cho ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi K là giao điểm của AC và DM, L là trung điểm của BD và CM.
a) Tứ giác MNPQ là hình gì?
b) Tứ giác MDPB là hình gì?
c) Chứng minh: AK = KL = LC.