Cho hình vuông ABCD. E di động trên đoạn CD (E khác C, D). Tia AE cắt đường thẳng BC tại F, tia Ax vuông góc vói AE tại A cắt đường thẳng DC tại K. Chứng minh:
a, C A F ^ = C K F ^
b, Tam giác KAF vuông cân
c, Đường thẳng BD đi qua trung điểm I của KF
d, Tứ giác IMCF nội tiếp với M là giao điểm của BD và AE
Cho hình vuông ABCD, trên BC lấy E. Dựng Ax vuông góc với AE, Ax cắt CD kéo dài tại F. Kẻ trung tuyến AI của tam giác AEF, AI cắt CD tại K, qua E dựng đường thẳng song song với AB cắt AI tại G.Gọi giao điểm của È và AD là J . Chứng minh GJ vuông góc với JK
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc với AE tại A cắt CD kéo dài tại F. Kẻ trung tuyên AI của tam giác AEF và kéo dài cắt cạnh CD tại K.
a, Chứng minh AE = AF
b, Chứng minh các tam giác AKF, CAF đồng dạng và A F 2 = K F . C F
c, Cho AB = 4 cm, BE = 3 4 BC. Tính diện tích tam giác AEF
d, Khi E di động trên cạnh BC, tia AE cắt CD tại J. Chứng minh biểu thức A E . A J F J có giá trị không phụ thuộc vị trí của E
Cho hình vuông ABCD. Lấy điểm E thuộc cạnh BC, Với E ko trùng B và E ko trùng C. Vẽ EF vuông góc với AE, Với F thuộc CD. Đường thẳng AF cắt đg thẳng BC tại G. Vẽ đg thẳng a đi qua điểm A và Vuông góc với AE, đg thẳng a cắt đg thẳng DE tại điểm H.
1/ chứng minh AE/AF = CD/DE
2/ chứng minh rằng tứ giác AEGH là tứ giác nội tiếp
3/ gọi b là tiếp tuyến của đg tròn ngoại tiếp tam giác AHE tại E, biết b cắt đg trung trực của đoạn EG tại K. Chứng minh KG là tiếp tuyến của đg tròn ngoại tiếp tam giác AHE
Giúp mình với!
Cho hình vuông ABCD. Gọi E là diểm thuộc cạnh BC(E khác B). Tia AE cắt tia DC tại K. Kẻ d qua A vuông góc AE. Đường thẳng d cắt CD tại I.
a) Chứng minh 1/AE^2 +1/AK^2 không thay đổi khi E di chuyển trên BC
b) đường thẳng đi qua A vuông góc với IE cắt đường thẳng CD tại M. Kẻ MQ vuống góc AE. Chứng minh tam giác AMQ vuông cân và 1/AE +1/AK= căn 2/AM
c) Tìm vị trí của E để IK ngắn nhất.
Cho hv ABCD. Gọi E là 1 diểm thuộc BC. Qua A kẻ Ax vuông góc với AE cắt CD tại F. Trung tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng kẻ qua E song song với AB cắt AI ở G
a) CM : AE = AF và EGFK là hình thoi
b) CM : tam giác AKF đồng dạng với tam giác CAF
c) CM : Khi E thay đổi trên BC thì chu vi tam giác EKC không đổi
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc
với AE tại A, cắt tia CD tại F.
a) Chứng minh tam giác AEF cân.
b) Kẻ đường trung tuyến AI của tam giác AEF . Tia AI cắt cạnh CD tại K. Chứng minh
tam giác AKF đồng dạng với tam giác CAF.
c) Cho AB = 4 cm, BE=\(\dfrac{3}{4}\)BC.Tính diện tích của tam giác AEF.
d) Gọi J là giao điểm của tia AE và tia DC. Chứng minh rằng tổng\(\dfrac{1}{AE^2}\)\(\dfrac{1}{AJ^2}\) không đổi khi E di động trên cạnh BC.
Cho hình vuông ABCD, điểm E tùy ý trên cạnh BC. Tia Ax vuông góc với AE tại A và cắt CD kéo dài tại F. Kẻ trung tuyến Ay của tam giác AEF và kéo dài cắt cạnh CD tại K. chúng minh:
a, AE=AF
b, tam giác AKF đồng dạng với tam giác CAF và AF^2= KF.CF
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC .Tia Ax vuông góc với AE tại A cắt cạnh CD kéo dài tại F Kẻ trung tuyến AI của tam giác AEF và kéo dài cắt cạnh CD tại K.
a) cm : AE=AF
b) Cm các tam giác AKF ,CAF đồng dạng và AF^2=KF.CF
c) Cho AB=4cm ,BE=3/4BC. Tính diện tích AEF.
d) AE kéo dài CD tại I .CM:1/AE^2+1/AJ^2 không phụ thuộc vào vị trí điểm E
MN GIÚP EM CÂU C VÀ D VỚI Ạ EM CẢM ƠN MN NHIỀU ^