Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Truong Tuan MInh

Cho hình thang MNPQ, có đáy bé MN bằng 3/5 đáy lớn PQ. Hai đường chéo MP và NQ cắt nhau tại K. Biết diện tích tam giác NPK là 15cm2. Tính diện tích hình thang MNPQ.

Akai Haruma
10 tháng 5 2021 lúc 19:56

Lời giải:

$S_{MNQ}=S_{MNP}$ (do chiều cao bằng nhau và chung đáy)

$\Rightarrow S_{MQK}=S_{NKP}=15$ (cm2)

Kẻ đường cao $NH$ xuống $MP$, đường cao $QT$ xuông $MH$

\(\frac{S_{MNP}}{S_{MQP}}=\frac{MN}{PQ}=\frac{3}{5}\)

\(\frac{S_{MNP}}{S_{MQP}}=\frac{NH}{QT}\)

\(1=\frac{S_{NPK}}{S_{MQK}}=\frac{NH\times PK}{QT\times MK}\Rightarrow \frac{NH}{QT}=\frac{MK}{PK}\)

Từ 3 điều trên suy ra $\frac{MK}{PK}=\frac{3}{5}$

$\frac{S_{MNK}}{S_{NPK}}=\frac{MK}{PK}=\frac{3}{5}$

$S_{MNK}=\frac{3}{5}\times S_{NPK}=\frac{3}{5}\times 15=9$ (cm2)

$\frac{S_{MQK}}{S_{PQK}}=\frac{MK}{PK}=\frac{3}{5}$

$\Rightarrow S_{PQK}=\frac{5}{3}\times S_{MQK}=\frac{5}{3}\times 15=25$ (cm2)

Diện tích hình thang:

$15+15+9+25=64$ (cm2)

Akai Haruma
10 tháng 5 2021 lúc 19:58

Hình vẽ: