a: Xét ΔADM và ΔBCM có
AD=BC
góc ADM=góc BCM
DM=CM
=>ΔADM=ΔBCM
=>MA=MB
b: ΔMAB cân tại M
mà MN là đường trung tuyến
nên MN vuông góc AB
a: Xét ΔADM và ΔBCM có
AD=BC
góc ADM=góc BCM
DM=CM
=>ΔADM=ΔBCM
=>MA=MB
b: ΔMAB cân tại M
mà MN là đường trung tuyến
nên MN vuông góc AB
Cho hình thang cân ABCD có AB song song với CD. Lấy M, N lần lượt là trung điểm CD, AB.
a) cm AM=BM
b) cm MN là đường cao của hình thang
Cho hình thang ABCD có AB//CD, AB là đáy nhỏ. Qua trung điểm I của BC, kẻ đường thẳng song song với AD lần lượt cắt AB ở M và CD ở N.
a. CM: Diện tích của ABCD bằng diện tích của AMND
b. Kẻ AH và DK lần lượt vuông góc với MN. CM: Diện tích của ABCD bằng diện tích của AHDK
1) Cho hình thang ABCD (AB//CD), I là trung điểm của BD, kéo dài về phía B, M và N theo thứ tự là trung điểm của AB, CD. Gọi E là giao điểm của AB, CD; F là giao điểm IN và BC. CM:
a) EF//AB
b)MN là phân giác góc ENF nếu ABCD là hình thang cân
2) Cho tam giác ABC, đường thẳng song song với trung tuyến AD, vẽ điểm P trên BC cắt AB và AC tại M và N. So sánh AM/AB và AN/AC. Tính tỉ số PM/AD. Cm PN+PM=2DA
Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.
Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.
Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.
a)Chứng minh : IE=IF
b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.
Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân
Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB
a)Chứng minh :DB là phân giác góc ADC
b)Chứng minh : DB vuông góc với BC
Cho tứ giác ABCD (AB không song song với CD). Giả sử M, N lần lượt là đường trung bình của AB và CD, thỏa mãn: MN = BC + AD / 2 . Gọi I là trung điểm của BD. Chứng minh: ABCD là hình thang.
Cho hình thang cân ABCD có AB song song vói CD, AB < CD. Kẻ AH vuông góc CD tại H. Gọi M là trung điểm của BC, E và F là trung điểm của AM và DM; AF cắt DE tại K. Lấy N đối xứng A qua M
a) CM: DN = AB + CD
b) CM: \(\dfrac{MK}{CH}=\dfrac{2}{3}\)
Cho hình thang cân ABCD (AB//CD). Vẽ đường cao AH của hình thang bằng 10 cm. Gọi M, N lần lượt là trung điểm của AD và BC. Tính độ dài MN biết AC vuông góc BD.
HELPPP
Cho hình thang ABCD có đáy AB<CD và O là giao điểm hai đường chéo . Từ trung điểm M của AB kẻ đường thảng MO cắt CD tại N
a)CM: N là trung điểm của CD
b) Kóe dài CD và BC cắt nhau tại I . Cm: I,M,N,O thẳng hàng
c) Qua O kẻ đường thẳng d song song với AB và CD ,cắt AD và BC lần lượt tại B và F
CM: O là trung điểm của EF
Bài 1:Cho hình thang cân ABCD ( AB// CD) có AB = 3 cm, CD = 6 cm, AD = 2,5 cm. Vẽ 2 đường cao AH, BK. Tính DH, DK, AH.
Bài 2: Cho hình thang ABCD (AB//CD) có AC = BD. Qua B kẻ đường thẳng song song vs AC, cắt đường thẳng DC tại E. Chứng minh rằng:
a) Tam giác BDE là tam giác cân.
b) Hình thang ABCD là hình thang cân.