Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thu Hà

Cho hình thang ABCD (AB//CD) có CD = 2AB. Gọi O là giao điểm của hai đường chéo AC và BD, F là giao điểm cạnh bên AD và BC
a) Chứng minh OC = 2OA
b) Điểm O là điểm đặc biệt gì trong tam giác FCD
c) Một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD, AC, BC tại M, I, K, N. Chứng minh DM/AD=CN/BC

Cao Tường Vi
25 tháng 4 2018 lúc 16:53

a) ABCD là hình thang nên AB//CD

CD=2AB ==>AB/CD=1/2

AB//CD, áp dụng định lý Ta-let, ta có

OA/OC=OB/OD=AB/CD=1/2

=>OA/OC=1/2 => OC=2OA

B) Ta có : OA/OC=OB/OD=AB/CD=1/2

==> OD/OB = 2 ==>OD = 2OB

*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);

OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD

c)

Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB

MI//AB, áp dụng hệ quả của định lý Ta-let, ta có

MI/AB = DM/AD = DI/IB (1)

IN//AB, áp dụng định lý Ta-let, ta có

CN/BC=DI/IB (2)

Từ (1) và (2), ta có

DM/AD=CN/BC

d)

KN//AB, áp dụng hệ quả của định lý Ta-let, ta có

KN/AB=CN/BC

Ta có :KN/AB=CN/BC và MI/AB=DM/AD

mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI


Các câu hỏi tương tự
Minh tú Trần
Xem chi tiết
Tran Kim
Xem chi tiết
Minh Đức Nguyễn
Xem chi tiết
Nguyễn Thị Hồng
Xem chi tiết
Nguyễn Thị Hồng
Xem chi tiết
Thanh Bình Nguyễn
Xem chi tiết
Xem chi tiết
anhmiing
Xem chi tiết
Pham Trong Bach
Xem chi tiết