Xét ΔAOB và ΔCOD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔAOB đồng dạng với ΔCOD
=>\(k=\dfrac{AB}{CD}=\dfrac{10}{25}=\dfrac{2}{5}\)
Xét ΔAOB và ΔCOD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔAOB đồng dạng với ΔCOD
=>\(k=\dfrac{AB}{CD}=\dfrac{10}{25}=\dfrac{2}{5}\)
Cho hình thang ABCD (AB//CD), gọi O là giao điểm của hai đường chéo AC và BD
a) chứng minh tam giac OAB đồng dạng tam giác OCD
b) Tia phân giác của góc COD cắt CD tại E. Chứng minh EC/ED=OA/OB
cho hình thang ABCD , cạnh đáy là AB và CD , gọi o là giao điểm của 2 đường chéo AC , BD
a, Chứng minh tam giác AOB đồng dạng với tam giác COD
Hình thang ABCD AB || CD có AB = 10cm, CD = 25cm và hai đường chéo cắt nhau tại O. Chứng minhh rằng Δ A O B ∽ Δ C O D và tìm tỉ số đồng dạng
Cho hình thang cân ABCD có AB // CD và AB < CD, đường chéo BD vuông góc với cạnh bên BC, đường cao BH. a) Chứng minh tam giác BDC và tam giác HBC đồng dạng. b) Cho BC = 6 cm; DC = 10 cm. Tính độ dài đoạn thẳng HC , HD. c) Chứng minh : HB2 = HD.HC
Cho hình chữ nhật ABCD có AD = 6 cm , AB = 8 cm , hai đường chéo AC và BD cắt nhau tại O , Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc CE tại H , chứng minh rằng : DC^2 = CH * DB
c) Gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC , và tính tỉ số diện tích của tam giác EHC và tam giác EDB
d) Chứng minh rằng ba đường thẳng OE , CD , BH đồng quy
Cho hình chữ nhật ABCD có AD = 6 cm , AB = 8 cm , hai đường chéo AC và BD cắt nhau tại O , Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc CE tại H , chứng minh rằng : DC^2 = CH * DB
c) Gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC , và tính tỉ số diện tích của tam giác EHC và tam giác EDB
d) Chứng minh rằng ba đường thẳng OE , CD , BH đồng quy
cho hình thang vuông ABCD (vuông tại A và D ) có 2 đường chéo vuông góc với nhau tại O , AB=4cm , CD=9cm.
a) CMR : tam giác OAB đồng dạng với tam giác DAB
b) Tính độ dài AD
c) CM : tam giác OAB đồng dạng với tam giác OCD
d) Tính tỉ số diện tích của tam giác OAB và OCD
1) cho hình thang ABCD có AB // CD hai đường chéo cắt nhau tại O . Chứng minh rằng diện tích tam giác AOD = diện tích tam giác BOC
2) cho tứ giác ABCD hai đường chéo cắt nhau tại O . Chung minh SAOD . SBOC = SCOD . SAOB
Cho hình thang vuông ABCD ( góc A = góc D = 90), AB=4cm,CD=9cm,AD=6cm a) CM: tam giác BAD đồng dạng tam giác ADC b) CM: AC vuông góc với BD c) Gọi O là giao điểm của AC và BD. Tính tỉ số diện tích 2 hai tam giác AOB và COD. d) Gọi K là giao điểm của DA và CB. Tính KA.