Cho hình phẳng (H)giới hạn bởi các đường y = sin x trục hoành và x=0; x = π . Thể tích vật thể tròn xoay sinh bởi hình (H) quay quanh trục Ox bằng
A..
B..
C..
D..
Cho hình phẳng (H) giới hạn bởi E : x 2 25 + y 2 9 = 1 và đường tròn ( C ) : x 2 + y 2 = 9 (phần nằm trong (E) và nằm ngoài (C). Tính thể tích khối tròn xoay sinh bởi (H) khi quay quanh trục Ox.
A.
B.
C.
D.
Thể tích V của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng giới hạn bởi các đường y = x ln x , x=e và trục hoành là.
Thể tích V của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng giới hạn bởi các đường y = x ln x , x = e và trục hoành là
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = ( x - 2 ) . e 2 x , trục tung và trục hoành. Thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox có dạng π ( e a + b ) c . Khi đó a+b+c bằng
A. 2
B. 56
C. -1
D. -24
Cho hình phẳng (H) giới hạn bởi các đường y = x + 2 , y = x + 2 , x = 1 . Tính thể tích V của vật thể tròn xoay khi quay hình (H) quanh trục hoành
A. V = 27 π 2
B. V = 9 π 2
C. V = 9 π
D. V = 55 π 6
Cho hình phẳng (H) giới hạn bởi các đường y = x + 2 , y = x + 2 ; x = 1 . Tính thể tích V của vật thể tròn xoay khi quay hình (H) quanh trục hoành.
Gọi H là hình phẳng giới hạn bởi đồ thị hàm số y = x , cung tròn có phương trình y = 6 - x 2 ( - 6 ≤ x ≤ 6 ) và trục hoành (phần tô đậm trong hình vẽ bên). Tính thể tích V của vật thể tròn xoay sinh bởi khi quay hình phẳng H quanh trục
Gọi (H) là hình phẳng giới hạn bởi (P): y = 3 x 2 cung tròn y = 4 - x 2 ( 0 ≤ x ≤ 2 ) và trục hoành (phần tô đậm trong hình vẽ). Thể tích của khối tròn xoay thu được khi quay (H)xung quanh trục Ox bằng