Gọi H là hình phẳng giới hạn bởi đồ thị hàm số y = x , cung tròn có phương trình y = 6 - x 2 ( - 6 ≤ x ≤ 6 ) và trục hoành (phần tô đậm trong hình vẽ bên). Tính thể tích V của vật thể tròn xoay sinh bởi khi quay hình phẳng H quanh trục
Thể tích của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng giới hạn bởi các đường y = tan x , x = 0 , x = π 3 và trục hoành bằng
Gọi (H) là hình phẳng giới hạn bởi các đồ thì hàm số y = tan x, trục hoành và các đường thẳng x = 0, x = π 4 . Quay (H) xung quanh trục Ox ta được khối tròn xoay có thể tích bằng
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = ( x - 2 ) . e 2 x , trục tung và trục hoành. Thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox có dạng π ( e a + b ) c . Khi đó a+b+c bằng
A. 2
B. 56
C. -1
D. -24
Tính thể tích V của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng giới hạn bởi các đường y=tanx; x=0; x = π 3 và trục hoành.
Cho (H) là hình phẳng giới hạn bởi parabol y = x 2 và đường tròn x 2 + y 2 = 2 (phần tô đậm trong hình). Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục hoành.
Cho (H) là hình phẳng giới hạn bởi 1 4 cung tròn có bán kính R=2, đường cong y = 4 - x và trục hoành ( miền tô đậm như hình vẽ). Tính thể tích V của khối tạo thành khi cho hình (H) quay quanh trục Ox.
Thể tích V của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng giới hạn bởi các đường y = x ln x , x=e và trục hoành là.
Thể tích V của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng giới hạn bởi các đường y = x ln x , x = e và trục hoành là