Một hình nón tròn xoay có bán kính bằng chiều cao và bằng 1. Gọi O là tâm của đường tròn đáy. Xét thiết diện qua đỉnh S hình nón là tam giác đều SAB. Tính khoảng cách từ O đến mặt phẳng ( SAC )
A. 3
B. 3 3
C. 2 3
D. 2 3 3
Cho hình nón có đỉnh S, đáy là hình tròn tâm O, bán kính R = 3 c m , góc ở đỉnh của hình nón là φ = 120 0. . Cắt hình nón bởi một mặt phẳng qua đỉnh S tạo thành tam giác đều SAB, trong đó A,B thuộc đường tròn đáy. Diện tích của tam giác SAB bằng
A. 3 3 c m 2 .
B. 6 3 c m 2 .
C. 6 c m 2 .
D. 3 c m 2 .
Cho hình nón đỉnh S, đáy là hình tròn tâm O, bán kính R=3cm, góc ở đỉnh hình nón là α = 120 ° . Cắt hình nón bởi mặt phẳng qua đỉnh S tạo thành tam giác đều SAB, trong đó A, B thuộc đường tròn đáy. Diện tích tam giác SAB bằng
A. 3 3 c m 2
B. 6 3 c m 2
C. 6 c m 2
D. 3 c m 2
Cho hình nón tròn xoay có đường cao h = 5 , bán kính đáy r = 3. Mặt phẳng (P) qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 4. Gọi O là tâm của hình tròn đáy. Tính khoảng cách d từ điểm O đến mặt phẳng (P).
A. d = 5 2
B. d = 10
C. d = 5
D. d = 10 2
Cho hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120 độ. Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3, tính diện tích xung quanh S x q của hình nón (N).
A. 27 3 π
B. 18 3 π
C. 9 3 π
D. 36 3 π
Cho hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120 0 . Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3, tính diện tích xung quanh S x q của hình nón N .
A. S x q = 36 3 π .
B. S x q = 27 3 π .
C. S x q = 18 3 π .
D. S x q = 9 3 π .
Hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120°. Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3. Tính diện tích xung quanh Sxq của hình nón (N).
A. 36 3 π
B. 27 3 π
C. 18 3 π
D. 9 3 π
Cho khối nón tròn xoay có đường cao h = 20cm, bán kính đáy r = 25cm. Một mặt phẳng (P) chứa đỉnh S và giao tuyến với mặt phẳng đáy là AB. Khoảng cách từ tâm O của đáy đến mặt phẳng (P) là 12 cm. Khi đó diện tích thiết diện của (P) với khối nón bằng:
A. 500 c m 2
B. 475 c m 2
C. 450 c m 2
D. 550 c m 2
Cho hình nón đỉnh S, đáy là đường tròn (O; 5). Một mặt phẳng đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm A và B sao cho S A = A B = 8 . Tính khoảng cách từ O đến (SAB).
A. 2 2
B. 3 13 14
C. 3 2 7
D. 13 2