Cho hình nón đỉnh S. Xét hình chóp S.ABC có đáy ABC là tam giác ngoại tiếp đường tròn đáy của hình nón và AB=BC=10a, AC=12a , góc tạo bởi hai mặt phẳng (SAB)) và (ABC) bằng 45 o C Thể tích khối nón đã cho bằng
A. 9 πa 3
B. 12 πa 3
C. 27 πa 3
D. 3 πa 3
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là a 2 . Thể tích của khối nón đỉnh S đáy là đường tròn ngoại tiếp tam giác ABC bằng:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B. AB = BC = a 3 , góc SAB = SCB = 90 0 và khoảng cách từ A đến mặt phẳng (SBC) bằng a 2 . Thể tích khối cầu ngoại tiếp hình chóp S.ABC là
Cho tam giác đều ABC cạnh a. Gọi (P) là mặt phẳng chứa BC và vuông góc với mặt phẳng (ABC). Trong (P), xét đường tròn (C) đường kính BC. Diện tích mặt cầu nội tiếp hình nón có đáy là (C), đỉnh là A bằng
A . πa 2 2
B . πa 2 3
C . πa 2
D . 2 πa 2
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a . Tam giác SAB có diện tích bằng 2 a 2 Thể tích khối nón có đỉnh là S và đường tròn đáy nội tiếp ABCD là
A. πa 3 7 8
B. πa 3 7 7
C. πa 3 7 4
D. πa 3 15 24
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B. Biết A B = B C = 3 , S A B = S C B = 90 O và khoảng cách từ A đến mặt phẳng (SBC) bằng a 2 Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC
A. 16 πa 2
B. 12 πa 2
C. 8 πa 2
D. 2 πa 2
Cho hình chóp S.ABC có đáy ABC là tam giác đều có cạnh là a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc vơi đáy. Tính thể tích của khối cầu ngoại tiếp hình chóp.
A . 15 πa 3 9
B . 5 15 πa 3 54
C . 5 15 πa 3 18
D . 4 3 πa 3 27
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân, AB = AC= a; mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính theo a thể tích của khối chóp S.ABC
A. 1 12 a 3
B. 3 4 a 3
C. 3 12 a 3
D. 1 4 a 3
Cho hình nón đỉnh S, đáy là đường tròn (0; 5). Một mặt phẳng đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm A và B sao cho SA = AB = 8. Tính khoảng cách từ O đến (SAB).