Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của AC và B’C’ (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng MN và B’D’ bằng



![]()

Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD'. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.
A. 3 a
B. 3 a 2
C. 3 a 3
D. 3 a 6
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi M, N lần lượt là trung điểm của cạnh AA' và A'B'. Số đo góc giữa hai đường thẳng MN và BD (như hình vẽ bên) là:

A. 45°.
B. 30°.
C. 60°.
D. 90°.
Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC. Biết góc giữa MN và mặt phẳng (ABC) bằng 60°. Khoảng cách giữa hai đường thẳng BC và DM là:
A . a 15 62
B . a 30 31
C . a 15 68
D . a 15 17
Cho hình lập phương ABCD.A 'B'C'D' có cạnh bằng 1. Gọi M, N lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa hai đường thẳng A'C và MN.


![]()
![]()
Cho hình lập phương ABCD. A 1 B 1 C 1 D 1 có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh B B 1 , CD. A 1 D 1 . Tính khoảng cách và góc giữa hai đường thẳng MP và C 1 N.
Cho khối lập phương ABCD.A’B’C’D’ cạnh bằng a. Các điểm E và F lần lượt là trung điểm của C’B’ và C’D’. Mặt phẳng (AEF) cắt khối lập phương đã cho thành hai phần, gọi V 1 là thể tích khối chứa điểm A’ và V 2 là thể tích khối chứa điểm C’. Khi đó V 1 V 2 là
A. 25 47 .
B. 1
C. 17 25 .
D. 8 17 .
Cho hình lập phương A B C D . A 1 B 2 C 1 D 1 cạnh a. Gọi M, N, P lần lượt là trung điểm của B B 1 , C D , A 1 D 1 Tính góc giữa hai đường thẳng MP và C 1 N .
A. 30 0
B. 60 0
C. 90 0
D. 45 0
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M, N lần lượt là trung điểm của AC và B'C' (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng MN và B’D’ bằng

![]()

![]()
