Phương pháp:
+) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa đường này và mặt phẳng song song với nó chứa đường kia.
+) Sử dụng phương pháp đổi đỉnh.
Cách giải:
Phương pháp:
+) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa đường này và mặt phẳng song song với nó chứa đường kia.
+) Sử dụng phương pháp đổi đỉnh.
Cách giải:
Cho hình lập phương ABCD.A′B′C′D′ cạnh a. Khoảng cách giữa hai đường thẳng BD và A′C′ bằng
A. 2 a.
B. a.
C. 3 a.
D. 2 a 2
hình lập phương ABCD.A′B′C′D′ cạnh a. Khoảng cách giữa hai đường thẳng AC và A′D bằng
A. 2 2 a
B. 3 3 a
C. 3 6 a
D. 2 3 a
Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Khoảng cách giữa hai đường thẳng AB,C′D′ bằng
A. 2 a
B. a
C. 3 a
D. 3 2 a
Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Khoảng cách giữa hai đường thẳng AB,C′D′ bằng
A. 2 a
B. a
C. 3 a
D. a 3 2
Cho hình lập phương ABCD.A′B′C′D′ cạnh bằng a. Khoảng cách giữa hai đường thẳng BD và CC′ bằng
A. a/2.
B. a 2 4
C. a 2 2
D. a/4.
Cho hình lập phương ABCD.A′B′C′D′ cạnh a. Gọi M, N lần lượt là trung điểm của AC và B′C′ (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng MN và B′D′ bằng
A. 5 a 5
B. a 3
C. 5 a
D. 3 a
Cho hình lập phương ABCD.A' B' C' D' có cạnh bằng 1. Khoảng cách giữa hai đường thẳng CD' và AB là
A. 1
B. 3
C. 2
D. 3 3
Cho tứ diện ABCD có AC=AD=BC=BD, AB=a, CD= a 3 Khoảng cách giữa hai đường thẳng AB và CD bằng a . Tính khoảng cách h từ điểm cách đều 4 đỉnh A,B,C,D đến mỗi đỉnh đó
A. h = a 13 2
B. h = a 13 4
C. h = a 3 2
D. h = a 3 4
Cho tứ diện ABCD có A B = A D = B C = B D , A B = a , C D = a 30 . Khoảng cách giữa hai đường thẳng AB và CD bằng a. Tính khoảng cách h từ điểm cách đều 4 đỉnh A, B, C, D đến mỗi đỉnh đó.
A. h = a 13 2
B. h = a 13 4
C. h = a 3 2
D. h = a 3 4