Đáp án C

Ta dễ dàng chứng minh được AA'//(BCC'B')
![]()
![]()
Gọi G là trọng tâm của tam giác ABC. Suy ra A'G ⊥ (ABC)
Ta có

![]()

Lại có
![]()
![]()
Ta luôn có


![]()
![]()

Gọi M, M' lần lượt là trung điểm của BC và B'C'. Ta có
.![]()
Mà MM'//BB' nên BC ⊥ BB' => BCC'B' là hình chữ nhật


Từ:
![]()

![]()


Đáp án C

Ta dễ dàng chứng minh được AA'//(BCC'B')
![]()
![]()
Gọi G là trọng tâm của tam giác ABC. Suy ra A'G ⊥ (ABC)
Ta có

![]()

Lại có
![]()
![]()
Ta luôn có


![]()
![]()

Gọi M, M' lần lượt là trung điểm của BC và B'C'. Ta có
.![]()
Mà MM'//BB' nên BC ⊥ BB' => BCC'B' là hình chữ nhật


Từ:
![]()

![]()


Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh là 1. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA' và BC bằng 3 4 , tính thể tích V của khối lăng trụ.
A . V = 3 36
B . V = 3 3
C . V = 3 6
D . V = 3 12
Cho lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA' và BC bằng a 3 4 .Khi đó thể tích của khối lãng trụ là
A . a 3 3 12
B . a 3 3 6
C . a 3 3 3
D . a 3 3 24
Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, BC= 2 2 a Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm O của BC. Khoảng cách từ O đến AA' bằng 3 2 a 11 . Tính thể tích của khối lăng trụ đã cho.
![]()
![]()
![]()
![]()
Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh 2a, hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết góc giữa cạnh bên và mặt phẳng đáy bằng 60 0 . Tính thể tích khối lăng trụ ABC.A’B’C’
A . a 3 3 4
B . 4 a 3 3
C . 2 a 3 3
D . a 3 3 2
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh 3a. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) là điểm D thỏa mãn D C ⇀ = - 2 D B ⇀ . Góc giữa đường thẳng AC’ và mặt phẳng (A'B'C') bằng 45 0 . Tính theo a thể tích khối lăng trụ ABC.A'B'C'.
A . 9 a 3 21 4
B . 3 a 3 21 4
C . 27 a 3 21 4
D . a 3 21 4
Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh AB = a, AA'= 2a. Hình chiếu của A lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Thể tích khối lăng trụ ABC.A’B’C’ là:
A . a 3 11 4
B . a 3 11 12
C . a 3 47 8
D . 3 a 3 4
Cho khối lăng trụ ABC.A′B′C′ có đáy là tam giác vuông cân tại A, BC = 2a và hình chiếu vuông góc của A′ lên mặt phẳng (ABC) trùng với trung điểm cạnh BC, góc giữa AA′ và mặt đáy bằng 60 ° . Thể tích khối lăng trụ đã cho bằng

![]()

![]()
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác ABC đều cạnh a . Gọi I là trung điểm AB , hình chiếu của điểm A' lên (ABC ) là trung điểm H của đoạn CI , góc giữa đường thẳng AA' và mặt phẳng (ABC ) bằng 45 độ. Tính khoảng cách giữa hai đường thẳng chéo nhau A A' và CI
Cho hình lăng trụ ABC.A'B'C' có mặt đáy ABC là tam giác đều, độ dài cạnh AB = 2a. Hình chiếu vuông góc của A' lên (ABC) trùng với trung điểm H của cạnh AB. Biết góc giữa cạnh bên và mặt đáy bằng 60 0 , tính theo a khoảng cách h từ điểm B đến mặt phẳng (ACC'A')
A . h = 39 a 13
B . h = 2 15 a 5
C . h = 2 21 a 7
D . h = 15 a 5