a: BD=căn 8^2+6^2=10cm
Xét ΔBCD vuông tại C có sin DBC=CD/BD=3/5
=>góc DBC=37 độ
=>góc BDC=53 độ
b: CH=8*6/10=4,8cm
BH=BC^2/BD=64/10=6,4cm
a: BD=căn 8^2+6^2=10cm
Xét ΔBCD vuông tại C có sin DBC=CD/BD=3/5
=>góc DBC=37 độ
=>góc BDC=53 độ
b: CH=8*6/10=4,8cm
BH=BC^2/BD=64/10=6,4cm
cho hình chữ nhật abcd bt ab=8cm,cd=6cm.từ c kẻ ch vuông góc với bd(h thuộc bd) a,giải tam giác vuông bcd. b,gọi o là giao điểm của ac và bd , qua điểm h kẻ đường thẳng he vuông góc với ac(e thuộc ac) ,tính ch,bh,ce? c,gọi f là giao điểm của eh và ad,tính diện tích tam giác aef
Cho hình chữ nhật ABCD . Qua D kẻ đường thẳng vuông góc với BD cắt BA, BC tại M, N. Gọi O là trung điểm của MN.
a) Chứng minh BO vuông góc với AC
b) Gọi E là trung điểm của DN, I là giao điểm của AC, BD
Chứng minh MI vuông góc với BE
c) Hình chữ nhật ABCD thỏa mãn điều kiện gì để diện tích tam giác BMN nhỏ nhất
Cho đường tròn (O;R), và các tiếp tuyến AB,AC căt nhau tại A nằm ngoài đường tròn(B,C là các tiếp điểm).Gọi H là giao điểm của BC và OA
a)CM: OAvuông góc với BC và OH.OA=R^2
b)Kẻ đường kính BD của đường tròn (O) và đường thẳng CD vuông góc với BD (K thuộc BD).CM OA song song với CD và AC.CD=CK.AO
c)Gọi I là giao điểm của AD và CK. CM:tam giác BIK và tam giác CHK có diện tích bằng nhau.
Cho đường tròn (O), đường kính BC. Lấy 1 điểm A trên đường tròn (O) sao cho AB>AC. Từ A kẻ AH vuông góc vs BC( H thuộc BC). Từ H vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB và F thuộc AC).
a, chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF
b, Đường thẳng EF cắt đường tròn tại P và Q (E nằm giữa P và F)
Chứng minh AP^2=AE*AB. suy ra APH là tam giác cân
c, Gọi D là giao điểm của PQ và BC, K là giao điểm của AD và đường tròn (O) ( K khác A). Chứng minh rằng AEFK là tứ giác nội tiếp
d, Gọi I là giao điểm của KF và BC. Chứng minh IH^2=IC*ID
Cho đường tròn (O;R), và các tiếp tuyến AB,AC căt nhau tại A nằm ngoài đường tròn(B,C là các tiếp điểm).Gọi H là giao điểm của BC và OA
a)CM: OAvuông góc với BC và OH.OA=R^2
b)Kẻ đường kính BD của đường tròn (O) và đường thẳng CD vuông góc với BD (K thuộc BD).CM OA song song với CD và AC.CD=CK.AO
c)Gọi I là giao điểm của AD và CK. CM:tam giác BIK và tam giác CHK có diện tích bằng nhau
Chi can lam cau c
Cho tam giác ABC có A = 90o , AB<AC. Kẻ đường cao AH. Kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC)
a) C/n: góc AEF = góc ACB
b) Gọi S là giao điểm của EF với BC
C/m: SE.SF=SB.SC\
c) Gọi M là trung điểm của BC, qua A kẻ đường // với EF cắt BC tại P.
C/m: HP.HM=HB.HC và PA2=PB.PC
cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại D. Kẻ AE vuông góc BD(E thuộc cạnh BD), AE cắt BC ở K. Kẻ AH vuông góc BC( H thuộc BC). gọi I là giao điểm của AH và BD. Chứng minh tứ giác IKDA là hình thoi
Cho tam giác ABC nhọn (AB < AC). Đường tròn (O) đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE . Tia AH cắt BC tại F.
a) Chứng minh: HB . HD = HC . HE và AF vuông góc với BC.
b) Gọi M là trung điểm của CH. Chứng minh tứ giác OMEF là tứ giác nội tiếp.
c) Đoạn thẳng DF cắt CE tại N . Qua N vẽ đường thẳng vuông góc với CE cắt BC và BD lần lượt tại I và K . Chứng minh N là trung điểm của IK
cho (O) đường kính AB = 6 cm.Trên đoạn OB lấy điểm M sao cho MB =1cm . Qua M vẽ dây CD của (O) vuông góc với AB
a/ CM tam giác ABC vuông và tính BC
b/ Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của (O) ở E .Chứng minh EC là tiếp tuyến của (O)
c/gọi F là giao điểm của hai tia AC và BD . Kẻ FH vuông góc AB và gọi K là giao điểm của hai tia CB và FH CM;tam giác FBK cân
d/ CM H,C,E thẳng hàng