a) xét tam giác HBA ta có:
NH=NB
MH=MA
=> MN là đường trung bình của tam giác HBA
=> MN//BA ; MN=1/2BA
b) xét tứ giác MNCK ta có:
MN//BA mà BA//CD
=> MN//CD//CK (1)
MN=1/2BA
KC=KD
mà BA=CD
=> MN=CK (2)
từ (1) và (2) suy ra tứ giác MNCK là hình bình hành
c)...
a,b: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
c; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ