a: Xét ΔACE có AM/AE=AO/AC
nên MO//CE
=>OMEC là hình thang
a: Xét ΔACE có AM/AE=AO/AC
nên MO//CE
=>OMEC là hình thang
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo . Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.
a) Chứng minh tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành.
b) Gọi H và K lần lượt là hình chiếu của F trên các đường thẳng BC và CD. Chứng minh tứ giác CHFK là hình chữ nhật.
c) Chứng minh bốn điểm E, H, K, I thẳng hàng.
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo. Lấy một điểm E nằm giữa hai điểm O và B. gỌI F là điểm đối xứng với điểm A qua E và I là trung điểm của CF
a, Chứng minh tứ giác OEFC là hinh thang và tứ giác OEIC là hình bình hành .
b, Gọi H và K lần lượt là hình chiếu của F trên các đường thẳng BC và CD. Chứng Minh tứ giác CHFK là hình chữ nhật
c,Chứng minh bốn điểm E,H,K,I thẳng hàng
Cho hình chữ nhật ABCD hai đường chéo cắt nhau tại O.Gọi K là điểm nằm giữa O và B.M đối xứng qua K.Gọi E;F lần lượt là hình chiếu của M treenAB;AD.a/Tứ giác AMBD là hình gì? b/C/m AEMF là hình chữ nhật. c/C/m 3 điểm K E F thẳng hàng
cho hình chữ nhật ABCD có hai đường chéo BD và AC cắt nhau tại O, lấy điểm P tùy ý trên đường chéo BD. Gọi M là điểm đối xứng nhau với C qua P .
a, Chứng minh AM // BD
b, Gọi E và F lần lượt là hình chiếu của M trên AD và AB . Chứng minh tứ giác AEMF là hình chữ nhật
c, Chứng minh EF//AC
d, Chứng minh 3 điểm F,E,P thẳng hàng
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo. Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF
a) Chứng minh tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành
b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. Chứng minh tứ giác CHFK là hình chữ nhật và I là trung điểm của đọan thẳng HK
c) Chứng minh ba điểm E, H, K thẳng hàng
1. Cho tứ giác ABCD. Gọi O là giao điểm của 2 đường chéo (không vuông góc), I và K lần lượt là trung điểm của BC và CD. Gọi M và N theo thứ tự là điểm đối xứng của điểm O qua tâm I và K.
a) C/m rằng tứ giác BMND là hình bình hành.
b) Với điều kiện nào của 2 đường chéo AC và BD thì tứ giác BMND là hình chữ nhật
c) C/m 3 điểm M,C,N thẳng hàng
ho hình chữ nhật ABCD có O là giao điểm hai đường chéo. Qua điểm I thuộc đoạn thẳng OA , kẻ đường thẳng song song với BD , cắt AD và AB theo thứ tự ở E và F. Gọi K là điểm đối xứng của A qua I.
a) chứng minh AFKE là hình chữ nhật
b) gọi H,M lần lượt là trung điểm BE, DF . CM : IO = HM
Cho hình chữ nhật ABCD. O là giao điểm hai đường chéo và một điểm P bất kì trên đường chéo BD (P nằm giữa O và D). Gọi M là điểm đối xứng của C qua P. a) Chứng minh tứ giác AMDB là hình thang. Xác định vị trí của P trên BD để AMDB là hình thang cân. b) Kẻ ME vuông góc AD, MF vuông góc BA. Chứng minh EF // AC và 3 điểm E, F, P thẳng hàng. c) Xác định vị trí P trên BD để tứ giác nối 4 điểm A, M, D, B là hình thang cân. d) Nếu hình chữ nhật ABCD có AB = 2BC. Gọi K là điểm trên AB sao cho góc ADK = $15^o$. Chứng minh tam giác CDK cân.
GIÚP MIK VS MINH CẦN GẤP! CẢM ƠN
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo. Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF
a) Chứng minh tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành
b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. Chứng minh tứ giác CHFK là hình chữ nhật
c) Chứng minh H và K đối xứng với nhau qua CF
d) Chứng minh ba điểm E, H, K thẳng hàng
Cho tứ giác ABCD. Gọi O là giao điểm của hai đường chéo . Gọi M và N theo thứ tự là điểm đối xứng của O qua I và K lần lượt là trung điểm
a, chứng minh tứ giác BMND là hình bình hành
b, với điều kiện nào của hai đường chéo AC và BD thì tứ giác BMND là hình chữ nhật
c,chứng minh ba điểm M,C,N thẳng hàng