Cho hình chữ nhật ABCD, AB= 2AD. Trên cạnh AD lấy điểm M, trên cạnh BC lấy điểm P sao cho AM= Cp. Kẻ BH vuông góc với AC tại H. Gọi Q là trung điểm của CH, đường thẳng kẻ qua P song song với MQ cắt AC tại N. Chứng imnh tứ giác MNPQ là hình bình hành.
1. Cho hình chữ nhật ABCD, AB= 2AD. Trên cạnh AD lấy điểm M, trên cạnh BC lấy điểm P sao cho AM= CP. Kẻ BH vuông góc với AC tại H. Gọi Q là trung điểm của CH, đường thẳng kẻ qua P song song với MQ cắt AC tại N.
a) Khi M là trung điểm của AD. CM: BQ⊥NP
b) Đường thẳng AP cắt CD tại điểm F.
CMR: \(\dfrac{1}{AB^2}=\dfrac{1}{AP^2}+\dfrac{1}{4AF^2}\)
2. Cho tam giác ABC vuông tại A trên cạnh BC lấy điểm D bất kỳ. Gọi E và F lần lượt là hình chiếu của D trên cạnh AB và AC.
Trên cạnh BC lấy điểm M sao cho ^BAD=^CAM
CMR: \(\dfrac{DB}{DC}.\dfrac{MB}{MC}=\dfrac{AB^2}{AC^2}\)
Hình chữ nhật ABCD, AB BC. Từ B, kẻ BH vuông góc vối AC tại H. Lấy E sao cho H là trung điểm BE. Q đói xứng C qua H. QE cắt DC tại M. N là hình chiếu E trên AD. MN cắt DE tại O. CM BCEQ là hình gì Tam giác OEM cân.ADEC là hình thang cân .Hình chữ nhật ABCD, AB BC. Từ B, kẻ BH vuông góc vối AC tại H. Lấy E sao cho H là trung điểm BE. Q đói xứng C qua H. QE cắt DC tại M. N là hình chiếu E trên AD. MN cắt DE tại O. CM BCEQ là hình gì ...N,M,H thẳng hàng.
cho tam giác ABC cân tại A. Gọi H, K lần lượt là trung điểm của BC và AC.
a) chứng minh ABHK là hình thang.
b) Trên tia đối của tia HA lấy điểm Éao cho H là trung điểm của AE. Chứng minh tứ giác ABEC là hình thoi
C) Qua A vẽ đường thẳng vuông góc với AH cắt tia HK tại D. chứng minh AD =BD.
d) Vẽ HN vuông góc với AB (N thuộc AB), gọ I là trung điêm của AN. Trên tia đối của BH lấy điểm M sao cho B là trung điểm của HM. Chứng minh MH vuông góc HI
Cho tam giác ABC cân tại A. Gọi H, K lần lượt là trung điểm của BC, AC.
a) Chứng minh tứ giác ABHK là hình thang.
b) Qua A vẽ đường thẳng vuông góc với AH, cắt tia HK tại D. Chứng minh AD=BH.
c) Vẽ HN vuông góc với AB (N thuộc AB), gọi I là trung điểm của AN. Trên tia đối của tia BH, lấy điểm M sao cho B là trung điểm của HM. Chứng minh MN vuông góc với HI.
cho hình chữ nhật ABCD( AB>BC). Từ B kẻ BH vuông góc với AC tại H. Lấy E sao cho H là trung điểm BE, lấy Q đối xứng với C qua H.
a) Tứ giác BCEQ là hình gì? Vì sao?
b)QE cắt DC tại M. Gọi N là hình chiếu của E trên AD, MN cắt DE tại o.CM tam giác OEM là tam giác cân
c) chứng minh rằng ADCE là hình thang cân
d) chứng minh 3 điểm N, M, H thẳng hàng
cho hcn ABCD ;AB=2AD. trên cạnh AD lấy M ,trên cạnh BC lấy P sao cho AM=CP .kẻ BH vuông góc vs AC tại H .gọi Q là trung điểm của CH ,đường thẳng kẻ qua P song song vs MQ cắt AC tại N
a) chứng minh tứ giác MNPQ là hình bình hành
b) khi M là trung điểm AD .chứng minh BQ vuông góc vs NP
c) đường thẳng AP cắt DC tại điểm F . chứng minh rằng \(\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)
cho hình chữ nhật ABCD, AB=2AD. Trên cạnh AD lấy điểm M, trên cạnh BC lấy điểm P sao cho AM=CP. Kẻ BH vuông góc với AC tại H. Gọi Q là trung điểm của CH, đường thẳng qua P song song với MQ cắt AC tại N.
a. cmr: tứ giác MNPQ là hình bình hành
b.khi M là trung điểm của AD. cmr: \(\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{AF^2}\)
giúp giùm đi nha
Cho Hình Chữ Nhật ABCD, Trên AD lấy M, BC lấy P sao cho AM=CP, Kẻ BH vuông góc với AC tại H. Q là trung điểm của Ch, đường thẳng qua P song song với MQ cắt AC tại N. Chứng Mình : a) MNPQ là hình bình hành
help me