\(AC=\sqrt{AB^2+BC^2}\)
\(AC=\sqrt{3^2+4^2}\)
\(AC=\sqrt{25}\)
\(AC=5\)
\(\Rightarrow A\)
\(AC=\sqrt{AB^2+BC^2}\)
\(AC=\sqrt{3^2+4^2}\)
\(AC=\sqrt{25}\)
\(AC=5\)
\(\Rightarrow A\)
1)Cho hình bình hành ABCD, xác định các vectơ DA+DC,AB+DA.
2)Cho 5 điểm A, B, C, D, E. Chứng minh rằng: AC-ED+CD+EC-BC = AB
3)Cho hình vuông ABCD, tâm O cạnh bằng a.
a) Xác định vecto BA+DA+AC, AB+CA+BC, AB+AC.
b) Tính độ dài vecto DA+DC, AB-BC
Cho ∆ abc có A (2;1), B(-2;5), c(-5;2) a) tính tọa độ vectơ AB-> ; AC-> ; BC-> b) tính chu vi ∆ ABC CMR ∆ABC vuông tại B c) tìm tọa độ trung điểm I của AB d)_________trọng tâm ∆ ABC e)_________ D sao cho ABCD là hình bình hành
cho hình chữ nhật abcd có cạnh ab = 8, bc = 6 lấy điểm m bất kì , chứng minh rằng vectơ ac + bm = am + bc
Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.
A. AD BC . B. MQ PN . C. MN QP . D. AB DC .
Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng
A. HA CD và AD CH .
B. HA CD và DA HC .
C. HA CD và AD HC .
D. HA CD và AD HC và OB OD .
Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng
A. 1. B. 2. C. 2. D. 3.
Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm 4 , 3 . Độ dài của vectơ AB là
A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm
Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng
A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a
Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB . Độ dài vectơ AC là
A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c
Cho ΔABC vuông tại A, biết (AB) ⃗.(CB) ⃗=4, (AC) ⃗.(BC) ⃗=9. Khi đó AB, AC, BC có độ dài là
A. 2; 3; √13. B. 3; 4; 5. C. 2; 4; 2√5. D. 4; 6; 2√13.
Câu 21: Cho tam giác ABC với AD là đường phân giác trong. Biết AB = 5 , BC = 6 , CA = 7 . Khẳng định nào sau đây Đúng? A, vectơ AD = 5/12 vectơ AB + 7/12 vectơ AC B, vectơ AD = 7/12 vectơ AB - 5/12 vectơ AC C, vectơ AD = 7/12 vectơ AB + 5/12 vectơ AC D, vectơ AD = 5/12 vectơ AB - 7/12 vectơ AC
Cho hình vuông ABCD tâm O có độ dài cạnh =6. Gọi E là điểm trên đường thẳng AC thỏa vectơ AC=3 vectơ AE và M là trung điểm AD. Chứng minh đẳng thức vectơ EB+vectơ EC+vectơ ED= vectơ AC
Cho một hình chữ nhật ABCD. Số nhóm các vectơ có độ dài bằng nhau là:
A. 2
B. 3
C. 4
D. 6
Cho hình chữ nhật ABCD tâm O có cạnh AB=2a,OA=a√5.Tính độ dài véc tơ BC
Câu 38: Cho hình chữ nhật ABCD . Chứng minh | vectơ AB + vectơ AD | = |vectơ BA + vectơ BC |