Đáp án C
Có 3 mặt phẳng. 2 mặt phẳng là các mặt đi qua điểm S và qua các đường trung trực của AB và AD.1 mặt phẳng qua S và song song với mặt phẳng A B C D .
Đáp án C
Có 3 mặt phẳng. 2 mặt phẳng là các mặt đi qua điểm S và qua các đường trung trực của AB và AD.1 mặt phẳng qua S và song song với mặt phẳng A B C D .
Cho hình chóp tứ giác đều S.ABCD . Số mặt phẳng qua điểm S cách đều các điểm A,B,C,D là:
A. 4
B. 2
C. 3
D. 1
Cho hình chóp S.ABCD có đáy là hình bình hành. Hỏi có tất cả bao nhiêu mặt phẳng cách đều 5 điểm S, A, B, C, D ?
A. 2 mặt phẳng.
B. 5 mặt phẳng
C. 1 mặt phẳng
D. 4 mặt phẳng.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A,B,C,D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy ?
A. 4 mặt phẳng
B. 2 mặt phẳng
C. 1 mặt phẳng
D. 5 mặt phẳng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
A. 2 mặt phẳng
B. 5 mặt phẳng
C. 1 mặt phẳng
D. 4 mặt phẳng
Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1;2;1), B(-2;1;3), C(2;-1;3), D(0;3;1). Mặt phẳng (P):ax+by+cz-10=0 đi qua hai điểm A, B và cách đều hai điểm C, D và hai điểm C, D nằm khác phía so với mặt phẳng (P). Tính S=a+b+c.
A. S=7.
B. S=15.
C. S=6.
D. S=13.
Cho mặt cầu (S) bán kính R = 5 c m . Mặt phẳng P cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π cm . Bốn điểm A, B, C, D thay đổi sao A, B, C cho thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3
Cho mặt cầu S có bán kính R = 5 c m . Mặt phẳng P cắt mặt cầu S theo giao tuyến là đường tròn C có chu vi bằng 8 π . Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn C , điểm D thuộc S (D không thuộc đường tròn C ) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại đỉnh B với AC = 2a, BC = a. Đỉnh S cách đều các điểm A, B, C. Biết góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 ° . Khoảng cách từ trung điểm M của SC đến mặt phẳng (SAB) bằng
A. a 39 13
B. 3 a 13 13
C. a 39 26
D. a 13 26
Cho hình chóp tứ giác đều S.ABCD, có cạnh đáy bằng a và có thể tích V = a 3 3 6 Gọi J là điểm cách đều tất cả các mặt của hình chóp. Tính khoảng cách d từ J đến mặt phẳng đáy.
A. d = a 3 4
B. d = a 3 2
C. d = a 3 6
D. d = a 3 3