+) Qua N kẻ NP// SC .
- Ta có:
- Từ đó ta có: (MNP) là mặt phẳng qua MN và song song với SC.
- Vậy (P) ≡ (MNP).
+) Ta có: (P) ∩ (SCD) = NP.
- Ta có:
+) Trong (ABCD), gọi I = NQ ∩ AC.
- Ta có:
+) Qua N kẻ NP// SC .
- Ta có:
- Từ đó ta có: (MNP) là mặt phẳng qua MN và song song với SC.
- Vậy (P) ≡ (MNP).
+) Ta có: (P) ∩ (SCD) = NP.
- Ta có:
+) Trong (ABCD), gọi I = NQ ∩ AC.
- Ta có:
Cho hình chóp S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD.
a) Tìm giao điểm N của đường thẳng CD và mp(SBM).
b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC).
c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC).
d) Tìm giao điểm P của SC và mặt phẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM).
Cho hình chóp S.ABCD. Gọi M, N là hai điểm trên SB, CD và (P) là mặt phẳng qua MN và song song với SC. Xác định thiết diện của hình chóp và mặt phẳng (P).
cho hình chóp S.ABCD, đáy ABCD là vuông tâm I. Gọi M,N lần lượt là trung điểm SB,SC
a) tìm giao tuyến của hai mặt phẳng (SBD) và (SAC)
b) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)
c) tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
d) tìm giao tuyến của 2 mặt phẳng (MNA) và (ABCD)
cho hình chóp S.ABCD đáy ABCD là tứ giác lồi (các cặp cạnh đối không song song. Gọi E là điểm thuộc cạnh SC
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)
c) tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là một điểm trên cạnh SC và (a) là mặt phẳng chứa AM và song song với BD. a. Tìm giao tuyến của hai mặt phăng (SAC) và (SBD) ? b. Tìm các giao điểm E, F của mặt phẳng (a) lần lượt với các cạnh SB, SD.
Cho hình chóp (S.ABCD) có đáy (ABCD) là hình bình hành; M, N lần lượt là trung điểm của (SB, SD) a) Chứng minh đường thẳng BD song song với mặt phẳng (AMN) b) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). Tìm giao điểm của đường thẳng MN và mặt phẳng (SAC)
Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN)
c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN)
Cho hình chóp tứ giác S.ABCD có AB và CD không song song với nhau. Gọi M, N lần lượt là trung điểm của SC và SA. a, Chứng minh MN //(ABCD). Tìm giao tuyến của (SAC) và (SBD). b, Tìm giao điểm của SD và mặt phẳng (MAB). (câu a chứng minh sơ sơ là đc ạ)
cho tứ diện SABC. Gọi M,N lần lượt là 2 điểm trên AB,BC sao cho MN không song song với AC
a) tìm giao tuyến của 2 mặt phẳng (SAB) và (SAC)
b) tìm giao tuyến của 2 mặt phẳng (SMN) và (SBC)
c) tìm giao tuyến của 2 mặt phẳng (SMN) và (SAC)
d) tìm giao tuyến của 2 mặt phẳng (SAN) và (SCM)