a: (SBD) giao (ABCD)=BD
SO vuông góc BD
AO vuông góc BD
=>((SBD);(ABCD))=góc SOA
b: (SCD) giao (SAD)=SD
Kẻ AH vuông góc SC
ΔSDC vuông tại D
Kẻ DK vuông góc SC
Qua H kẻ HF//DK
=>Góc cần tìm là góc AHF
a: (SBD) giao (ABCD)=BD
SO vuông góc BD
AO vuông góc BD
=>((SBD);(ABCD))=góc SOA
b: (SCD) giao (SAD)=SD
Kẻ AH vuông góc SC
ΔSDC vuông tại D
Kẻ DK vuông góc SC
Qua H kẻ HF//DK
=>Góc cần tìm là góc AHF
Cho hình chóp S.ABCD có SA vuông góc với đáy. Đáy ABCD là hình thang vuông ở A, B sao cho AB = BC = AD/2 = a. SA = 2a. a. Xác định góc giữa (SAB) và (SCD). b, Xác định góc giữa (SBD) và (SAB). c. Xác định góc giữa (SBC) và (SCD).
Cho hình chóp S.ABCD có SA vuông góc với đáy và SA=a/2 . Đáy ABCD là hình vuông cạnh 2a. a, Xác định góc giữa (SBD) và (ABCD). b, Xác định góc giữa (SCD) và (SAC).
Cho hình chóp S.ABCD có ABCD là hình vuông cạnh 2a, SA vuông mặt phẳng (ABCD). SA bằng \(a\sqrt{3}\)
a) chứng minh (SCD) vuông góc với (SAD)
b) Xác định và tính góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật biết AB=a; AD= 2a; SA vuông góc với đáy, SA=a√2. Xác định và tính góc giữa. a) Các đường thẳng SB, SC, SD với mp đáy. b) SC với các mp (SAD) và ( SAB). c) SA với mp (SCD). d) SB và (SAC).
Hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, có AB = 2a, AD = DC = a, có cạnh SA vuông góc với mặt phẳng (ABCD) và SA = a.
a) Chứng minh mặt phẳng (SAD) vuông góc với mặt phẳng (SDC), mặt phẳng (SAC) vuông góc với mặt phẳng (SCB).
b) Gọi φ là góc giữa hai mặt phẳng (SBC) và (ABCD), tính tanφ.
c) Gọi (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC). Hãy xác định (α) và xác định thiết diện của hình chóp S.ABCD với (α)
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a. Cạnh bên SA vuông góc với đáy và SC tạo với (SAD) góc 30 o . Gọi G là trọng tâm tam giác SAB. Tính khoảng cách từ G đến mặt phẳng (SCD).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy, khối chóp S.ABCD có thể tích bằng a 3 2 3 . Gọi α là góc giữa hai mặt phẳng (SAD) và (SBD). Tính cos α.
A. cos α = 3 5
B. cos α = 6 3
C. cos α = 2 2 5
D. cos α = 10 5
Cho hình chóp S.ABCD có ABCD là hình chữ nhật có tâm O, AB a AC=3a. SA vuông góc với mp (ABCD); SC-5a. a) Chứng minh BC l S4F. b) Trong tam giác SAD kẻ AH vuông góc SD. Chứng minh AH _ (SCD) c Xác định và tinh góc giữa SO và (SCD).
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = a, BC = 3a. Hai mặt phẳng (SAB) và mặt phẳng (SAD) cùng vuông góc với mặt phẳng đáy, cạnh SC hợp với mặt đáy một góc 30o. Tính thể khối chóp S.ABCD theo a.