Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, mặt bên SAB đều và nằm trong mặt phẳng vuông góc với (ABCD). Khoảng cách từ điểm A đến mặt phẳng (SCD) theo a là:
A. a 21 21
B. a 21 7
C. 3 a 21 7
D. a 21 3
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và A B C ^ = 60 ° . Hình chiếu vuông góc của điểm S lên mặt phẳng A B C D trùng với trọng tâm tam giác ABC. Gọi φ là góc giữa đường thẳng SB với mặt phẳng S C D , tính sin φ biết rằng S B = a .
A. sin φ = 2 2
B. sin φ = 2 3
C. sin φ = 3 2
D. sin φ = 6 2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=3a, AD=2a. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm H thuộc cạnh AB sao cho AH=2HB. Góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng 60°. Khoảng cách từ A đến mặt phẳng (SBC) là:
A. 2 a 39 13
B. 3 a 39 13
C. a 39 13
D. 6 a 39 13
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, B và AD = 2a, AB = BC = SA = a. Cạnh bên SA vuông góc với đáy, với M là trung điểm AD. Tính khoảng cách h từ M đến mặt phẳng (SCD).
A. h = a 3
B. h = a 6 6
C. h = a 6 3
D. h = a 3 6
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA = a (tham khảo hình vẽ). Khoảng cách từ đường thẳng AB đến mặt phẳng (SCD) bằng
A. a 2 2 .
B. a 6 3 .
C. a.
D. a 3 2 .
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật cạnh AB = a, AD = a 2 , cạnh bên SA vuông góc với mặt phẳng (ABCD), góc giữa SC và mặt phẳng (ABCD) bằng 60 độ. Gọi M là trung điểm của cạnh SB (tham khảo hình vẽ). Khoảng cách từ điểm M tới mặt phẳng (ABCD) bằng
A. a/2
B. 3a/2
C. 2 a 3
D. a 3
Cho hình chóp tứ giác S . A B C D có đáy A B C D là hình chữ nhật cạnh A B = a , A D = a 2 , cạnh bên S A vuông góc với mặt phẳng A B C D , góc giữa S C và mặt phẳng A B C D bằng 60 0 . Gọi M là trung điểm của cạnh S B (tham khảo hình vẽ). Khoảng cách từ điểm M tới mặt phẳng A B C D bằng
A. a 2 .
B. 3 a 2 .
C. 2 a 3 .
D. a 3 .
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và A B C = 60 ° . Hình chiếu vuông góc của điểm S lên mặt phẳng (ABCD) trùng với trọng tâm tam giác ABC. Gọi φ là goc giữa đường thẳng SB và mặt phẳng (SCD), tính sin φ biết rằng SB = a.
A. sin φ = 1 4
B. sin φ = 1 2
C. sin φ = 3 2
D. sin φ = 2 2
Cho hình chop S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết A D = 2 a , A B = B C = S A = a . Cạnh bên SA vuông góc với mặt đáy, gọi M là trung điểm của AD. Tính khoảng cách h từ M đến mặt phẳng (SCD).
A. h = a 3 .
B. h = a 6 6 .
C. h = a 3 6 .
D. h = a 6 3 .