Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a, góc giữa mặt bên và mặt phẳng đáy là α thỏa mãn cos α = 1 3 . Mặt phẳng (P) qua AC và vuông góc với mặt phẳng (SAD) chia khối chóp S.ABCD thành hai khối đa diện. Tỷ số thể tích của hai khối đa diện (khối bé chia khối lớn) bằng
A. 1 9
B. 1 10
C. 7 9
D. 9 10
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh, a góc giữa mặt bên và mặt phẳng đáy là α thoả mãn cos α = 1 3 . Mặt phẳng (P) qua AC và vuông góc với mặt phẳng (SAD) chia khối chóp S.ABCD thành hai khối đa diện. Tỉ lệ thể tích hai khối đa diện là gần nhất với giá trị nào trong các giá trị sau
A. 0,11
B. 0,13
C. 0,7
D. 0,9
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên (SAB) là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết rằng góc giữa mặt phẳng (SAD) và đáy bằng 45 ° . Tính thể tích V của khối chóp S.ABCD
A. V = a 3 3 6
B. V = a 3 2 3
C. V = a 3 6
D. V = a 3 5 6
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách giữa hai đường thẳng SA và BD bằng
A. a
B. a 2 2
C. a 21 7
D. a 21 14
Cho hình chóp tứ giác S.ABCD có đáy là hình vuông cạnh bằng a 2 . Tam giác (SAD) cân tại S và mặt bên (SAD) vuông góc với mặt phẳng đáy. Biết thể tích khối chóp S.ABCD bằng 4 3 a 3 . Tính khoảng cách h từ B đến mặt phẳng (SCD).
A. h = 2 3 a
B. h = 4 3 a
C. h = 8 3 a
D. h = 3 4 a
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên S C = a 15 . Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2 a 6 . Tính thể tích V của khối chóp S.ABCD?
A. V = 8 a 3 6 .
B. V = 12 a 3 6 .
C. V = 4 a 3 6 .
D. V = 24 a 3 6 .
Cho hình chóp S.ABC có đáy ABCD là hình chữ nhật tâm O, AB = a, B C = a 3 . Tam giác SAC cân tại S, mặt phẳng (SAD) vuông góc với mặt phẳng đáy (tam giác SAD có góc A nhọn). Biết góc giữa SD và mặt phẳng (ACD) bằng 60 ° . Tính thể tích khối chóp S.ABCD
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết rằng diện tích mặt cầu ngoại tiếp khối chóp S.ABCD là 4 π dm 2 Khoảng cách giữa hai đường thẳng SD và AC gần nhất với giá trị nào sau đây?
A. 2 7 d m
B. 3 7 d m
C. 4 7 d m
D. 6 7 d m
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt bên SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD biết rằng mặt phẳng (SBC) tạo với mặt phẳng đáy một góc 30 °
A. 2 3 a 3 3
B. 4 3 a 3 3
C. 3 a 3 2
D. 2 3 a 3