Đáp án D
Ta có I E E D = 1
I E E D . S D S M . M N N I = 1 ⇔ 1.2. M N N I = 1
M N N I = 1 2 ⇔ I N I M = 2 3
Đáp án D
Ta có I E E D = 1
I E E D . S D S M . M N N I = 1 ⇔ 1.2. M N N I = 1
M N N I = 1 2 ⇔ I N I M = 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm tam giác ABC và M là trung điểm SC. Gọi K là giao điểm của SD với mặt phẳng (AGM). Tính tỉ số K S K D
A. 1/2
B. 1/3
C. 2
D. 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N là trung điểm của SC, SD. Tính cosin của góc giữa hai mặt phẳng (GMN) và (ABCD).
A. 2 39 39
B. 3 6
C. 2 39 13
D. 13 13
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SB và G là trọng tâm tam giác SCD. Mặt phẳng (CMG) cắt cạnh AD tại điểm E. Tỉ số E D E A bằng
A. 1 3
B. 2 3
C. 3 5
D. 1 2
Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB//CD. Gọi M, N lần lượt là trung điểm của AD và BC; gọi G là trọng tâm tam giác SAB. Thiết diện của hình chóp với mặt phẳng (MNG) là hình bình hành thì
A. AB = 3CD
B. AB = 2CD
C. CD = 3AB
D. CD = 2AB
Cho hình chóp S.ABCD có đáy là hình thang. AD//BC, AD=2BC=2a. Gọi E, F lần lượt là trọng tâm các tam giác SAD và SBC. Gọi d là giao tuyến của hai mặt phẳng (EBC) và (FAD); M,N lần lượt là giao điểm của d với các mặt phẳng (SAB), (SCD). Độ dài đoạn thẳng MN bằng
A. 6 a 5
B. 3 a 2
C. 2 a 3
D. 5 a 6
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB, SC. Gọi I, K lần lượt là giao điểm của các đường thẳng AN, MN với mặt phẳng (SBD). Tỉ số BI/BK bằng
A. 4/3
B. 3/2
C. 5/4
D. 5/3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD (tham khảo hình vẽ bên). Tính côsin của góc giữa hai mặt phẳng G M N v à A B C D .
A. 2 39 39
B. 13 13
C. 3 6
D. 2 39 13
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD (tham khảo hình vẽ bên). Tính côsin của góc giữa hai mặt phẳng (GMN) và (ABCD)
A. 3 6
B. 2 39 13
C. 2 39 39
D. 13 13
Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD. Gọi I, J lần lượt là trung điểm của các cạnh AD, BC và G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sau đây đúng?
A. AB=3CD
B. A B = 1 3 C D
C. A B = 3 2 C D
D. A B = 2 3 C D