Trong mặt phẳng (ABCD) : BD ∩ EC = K
Trong mặt phẳng (SEC) : EF ∩ SK = J. Áp dụng định lí Me-nê-la-uýt vào tam giác EFC ta được: EJ/JF = 1
Đáp án B
Trong mặt phẳng (ABCD) : BD ∩ EC = K
Trong mặt phẳng (SEC) : EF ∩ SK = J. Áp dụng định lí Me-nê-la-uýt vào tam giác EFC ta được: EJ/JF = 1
Đáp án B
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi E, F lần lượt là trung điểm của AB và SC; I, J lần lượt là giao điểm của AF và EF với mặt phẳng (SBD). Tỉ số IA/IF bằng:
A. 1
B. 2
C. 3
D. 4
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi E, F lần lượt là trung điểm của AB và SC; I, J lần lượt là giao điểm của AF và EF với mặt phẳng (SBD). Tỉ số IJ/JB bằng:
A. 2/3
B. 1/3
C. 1/4
D. 1/2
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là một điểm trên cạnh SC và (a) là mặt phẳng chứa AM và song song với BD. a. Tìm giao tuyến của hai mặt phăng (SAC) và (SBD) ? b. Tìm các giao điểm E, F của mặt phẳng (a) lần lượt với các cạnh SB, SD.
Câu 3: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành b, Gọi M, N lần lượt là trung điểm của AB và SC. Tìm giao điểm của dường thẳng MN và (SBD) a, Tìm giao tuyến của (SAC) và (SBD)
Câu 5: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, SD và BC. Gọi E là giao điểm của mặt phẳng (MNP) với cạnh SA. Tính tỉ số SE SA . A. 1 4 . B. 1 2 . C. 1 3 . D. 3
cho hình chóp S.ABCD, đáy ABCD là hình thang, có đáy lớn AB. Gọi M,N lần lượt là trung điểm SA, SC, E = AC giao BD.
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
c) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)
cho hình chóp S.ABCD, đáy ABCD là hình thang, có đáy lớn AB. Gọi M,N lần lượt là trung điểm SA, SC, E = AC giao BD.
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
c) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)
Cho hình chóp S.ABCD, có đáy ABCD là hình thang có đáy lớn AD . Gọi E, F lần lượt là trung điểm của SA, SD.
a) Tìm giao tuyến của các cặp mặt phẳng: (SAC) và (SBD), (SAD) và (SBC).
b) Chứng minh EF// (ABCD) và EF// (SBC)
c) Gọi K là giao điểm của AB và CD. Tìm M, N lần lượt là giao điểm của SB và (CDE); SC và (EFM). Từ đó, tìm thiết diện của hình chóp cắt bởi mặt phẳng (KEF)
d) Cho AD=2BC. Tính tỉ số diện tích của tam giác KMN và tam giác KEF .
giúp mình giải câu d với ạ
cho hình chóp s.abcd có đáy là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạng SA,SC, và G là trọng tâm của △ABC
a) tìm giao tuyến của hai mặt phẳng (SAC) và (SBD)
b) tìm giao điểm BC và mặt phẳng (GMN)
c) xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (GMN)