Đường thẳng đi qua S và song song với AB.
Đáp án B
Đường thẳng đi qua S và song song với AB.
Đáp án B
Cho hình chóp S.ABCD đáy ABCD là hình bình hành.. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?
A. AD
B. BD
C. DC
D. AC
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Điểm M thỏa mãn M A → = 3 M B → Mặt phẳng (P) qua M và song song với hai đường thẳng SC, BD. Mệnh đề nào sau đây đúng?
A. (P) cắt hình chóp theo thiết diện là một tam giác
B. (P) không cắt hình chóp
C. (P) cắt hình chóp theo thiết diện là một ngũ giác
D. (P) cắt hình chóp theo thiết diện là một tứ giác
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Điểm M thỏa mãn M A → = 3 M B → . Mặt phẳng (P) qua M và song song với hai đường thẳng SC, BD. Mệnh đề nào sau đây đúng?
A. (P) cắt hình chóp theo thiết diện là một tam giác
B. (P) không cắt hình chóp
C. (P) cắt hình chóp theo thiết diện là một ngũ giác
D. (P) cắt hình chóp theo thiết diện là một tứ giác
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Điểm M thỏa mãn M A → = 3 M B → . Mặt phẳng (P) qua M và song song với hai đường thẳng SC, BD. Mệnh đề nào sau đây đúng?
A. (P) không cắt hình chóp.
B. (P) cắt hình chóp theo thiết diện là một tứ giác.
C. (P) cắt hình chóp theo thiết diện là một tam giác.
D. (P) cắt hình chóp theo thiết diện là một ngũ giác.
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AD//BC), BC=2a, AB=AD=DC=a với a>0. Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc AC. M là một điểm thuộc đoạn OD; MD=x với x>0; M khác O và D. Mặt phẳng (α) đi qua (α) đi qua M và song song với hai đường thẳng SD và AC cắt khối chóp S.ABCD theo một thiết diện. Tìm x để diện tích thiết diện là lớn nhất?
A. a 3 4
B. a 3
C. a 3 2
D. a
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là điểm trên cạnh SC sao cho 5 S M = 2 S C , mặt phẳng α đi qua A, M và song song với đường thẳng BD cắt hai cạnh SB, SD lần lượt tại hai điểm H, K. Tính tỉ số thể tích V S . A H M K V S . A B C D .
A. 1 5
B. 8 35
C. 1 7
D. 6 35
Cho hình chóp S.ABCD có SA vuông góc với đáy, ABCD là hình vuông cạnh a 2 , S A = 2 a . Gọi M là trung điểm của cạnh SC, α là mặt phẳng đi qua A, M và song song với đường thẳng BD. Tính diện tích thiết diện của hình chóp S.ABCD bị cắt bởi mặt phẳng α .
A. a 2 2
B. 4 a 2 3
C. 4 a 2 2 3
D. 2 a 2 2 3
Cho hình chóp S.ABC có SA=SB=CA=CB=AB=a, S C = a 3 2 , G là trọng tâm của tam giác ABC. là mặt phẳng đi qua G, song song với các đường thẳng AB và SB. Gọi M, N, P lần lượt là giao điểm của với các đường thẳng BC, AC, SC. Góc giữa hai mặt phẳng (MNP) và (ABC) bằng
A. 90 0 C
B. 45 0 C
C. 30 0 C
D. 60 0 C
Cho hình chóp S . A B C D có đáy ABCD là hình bình hành. Gọi M là điểm trên cạnh SC sao cho 5 S M = 2 S C , mặt phẳng α qua A, M và song song với đường thẳng BD cắt hai cạnh SB, SD lần lượt tại H, K. Tính tỉ số thể tích V S . A H M K V S . A B C D
A. 1 5
B. 8 35
C. 1 7
D. 6 35
cho hình thang ABCD có đáy nhỏ CD. Đường thẳng đi qua điểm D song song BC cắt AC tại M và AB tại K. Đường thẳng đi qua C song song AD cắt AB tại F. Qua F vẽ đường thẳng song song AC cắt BC tại P. Chứng minh:
a, MP // AB
b, 3 điểm MP, CF, DB đồng quy