Đáp án A
Phương pháp:
Chứng minh góc giữa hai mặt phẳng (SCD) và (ABCD) là SDA bằng cách sử dụng định nghĩa góc giữa hai mặt phẳng là góc giữa hai đường thẳng cùng vuông góc với giao tuyến.
Công thức tính thể tích khối chóp: V = 1 3 S . h
Cách giải:
Ta có: S A ⊥ A B C D ⇒ S A ⊥ C D
Mà A D ⊥ C D ⇒ C D ⊥ S A D ⇒ C D ⊥ S D .
Vì S C D ∩ A B C D = C D A D ⊥ C D S D ⊥ C D nên góc giữa (SCD) và (ABCD) là S D A = 60 °
Ta có: h = a . tan 60 ° = a 3
S A B M D = S A B C D − S Δ D C M = a 2 − 1 2 a . a 2 = 3 a 2 4
⇒ V S . A B M D = 1 3 S A B M D . h = 1 3 . 3 a 2 4 . a 3 = a 3 3 4
Chú ý khi giải:
HS thường xác định sai góc giữa hai mặt phẳng dẫn đến đáp số sai.