Hình chóp S.ABCD có đáy ABCDa là hình vuông cạnh a, SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy (ABCD). Biết côsin của góc tạo bởi mặt phẳng (SCD) và (ABCD) bằng 2 17 17 . Thể tích Vcủa khối chóp S.ABCD là:
A. V = a 3 13 6
B. V = a 3 17 6
C. V = a 3 17 2
D. V = a 3 13 2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với A B = 2 , A D = 2 3 . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M, N, P lần lượt là trung điểm của các cạnh SA, CD, CB. Tính côsin góc tạo bởi mặt phẳng (MNP) và (SCD).
A. 2 435 145 .
B. 11 145 145 .
C. 2 870 145 .
D. 3 145 145 .
Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a. Biết SA = a và vuông góc với đáy. Góc giữa mặt phẳng (SBC) và (SCD) bằng φ , với cos φ = 2 5 . Tính theo a thể tích của khối chóp S.ABCD
A. 4 3 a 3
B. 2 3 a 3
C. 2 a 3
D. a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với (ABCD).Biết rằng côssin của góc giữa (SCD) và (ABCD) bằng 2 19 19 . Tính a theo thể tích V của khối chóp S.ABCD
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với (ABCD). Biết rằng côsin của góc giữa (SCD) và (ABCD) bằng 2 19 19 . Tính theo a thể tích V của khối chóp S.ABCD.
A. V = 19 a 3 6
B. V = 15 a 3 6
C. V = 19 a 3 2
D. V = 15 a 3 6
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a. Cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA=a 3 . Góc tạo với mặt phẳng (SAB) và (SCD) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABCD). Biết SD = 2 a 3 và góc tạo bởi đường thẳng SC với mặt phẳng (ABCD) bằng 30 ∘ . Tính theo a thể tích khối chóp S.ABCD.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của các cạnh AB, AD. Tính sin của góc tạo bởi giữa đường thẳng SA và (SHK).
Cho hình chóp S.ABCD có ABC là tam giác đều cạnh a. Hai mặt phẳng (SAC),(SAB) cùng vuông góc với đáy và góc tạo bởi SC và đáy bằng 600. Tính khoảng cách h từ A tới mặt phẳng (SBC)